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Abstract

Group factor models have been developed to infer relationships between multiple
co-occurring multivariate continuous responses. Motivated by complex count data
from multi-domian microbiome studies using next-generation sequencing, we develop
a sparse Bayesian group factor model (Sp-BGFM) for multiple count table data that
captures the interaction between microorganisms in different domains. Sp-BGFM
uses a rounded kernel mixture model using a Dirichlet process (DP) prior with log-
normal mixture kernels for count vectors. A group factor model is used to model the
covariance matrix of the mixing kernel that describes microorganism interaction. We
construct a Dirichlet-Horseshoe (Dir-HS) shrinkage prior and use it as a joint prior
for factor loading vectors. Joint sparsity induced by a Dir-HS prior greatly improves
the performance in high-dimensional applications. We further model the effects of
covariates on microbial abundances using regression. The semiparametric model flex-
ibly accommodates large variability in observed counts and excess zero counts and
provides a basis for robust estimation of the interaction and covariate effects. We
evaluate Sp-BGFM using simulation studies and real data analysis, comparing it to
popular alternatives. Our results highlight the necessity of joint sparsity induced by
the Dir-HS prior, and the benefits of a flexible DP model for baseline abundances.
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1 Introduction

1.1 Motivation and Multi-Domain Microbiome Data

Statistical methods that capture correlations in different responses can be helpful in the

multiple output case. For example, canonical correlation analysis (CCA) and inter-battery

factor analysis (IBFA) are useful tools that combine two multivariate responses and provide

inference on cross-covariance between the responses (Browne, 1979; Bach and Jordan, 2005;

Klami et al., 2013). Group factor analysis extends traditional factor analysis to infer joint

variability between two or more multivariate responses (Virtanen et al., 2012; Klami et al.,

2014; Zhao et al., 2016). However, they may not be suitable for the analysis of multiple

intercorrelated multivariate count variables because those methods consider continuous

responses and assume a multivariate normal distribution.

The proposed method is motivated by a dataset from the multi-domain skin microbiome

study in Verbanic et al. (2020); Zhang et al. (2023); Verbanic et al. (2022). The dataset con-

sists of multiple count tables, with each count table representing a specific domain. In these

count tables, the counts correspond to the abundances of microbial operational taxonomic

units (OTUs), which are commonly used as a proxy for microbial species. Microorganisms,

including bacteria, viruses, fungi, and archaea, coexist in diverse communities within the

human body (Peters et al., 2012). However, most previous studies on the human micro-

biome have primarily focused on a single domain alone (usually bacteria) or have examined

different microbial domains separately. In the context of chronic wounds, the microbiome

comprises a mixture of different microbial species, forming polymicrobial communities. The

motivating study investigated bacteria and bacteriophages (bacterial viruses) in the wound

microbiome. Bacteriophages play a role in regulating bacterial abundance and influencing

their metabolism and fitness. They are essential components of the wound microbiome.

However, the interaction between bacterial and viral communities in wound microbiomes
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(a) Log-transformed normalized OTU counts (b) Empirical correlation estimates

Figure 1: [Multi-domain skin microbiome data] Panel (a) has a heatmap of the log-
transformed normalized OTU counts. The counts are normalized using cumulative sum
scaling. A pseudocount of 0.01 is added for log-transformation. Panel (b) illustrates em-
pirical correlation estimates using the log-transformed normalized OTU counts. The OTUs
are rearranged within a domain.

has received relatively limited attention. While Verbanic et al. (2020) and Zhang et al.

(2023) focused on the bacterial fraction of the microbial community in the dataset and

examined its taxonomic associations with debridement, Verbanic et al. (2022) explored

the viral content of wound surfaces in the same dataset but did not analyze it together

with bacteria. To gain a comprehensive understanding of wound microbiomes and their

association with treatment, it is essential to consider both bacteria and bacteriophages.

Statistical methods that account for the discreteness of data with multiple count responses

can be crucial to appropriately infer the intricate interactions among microorganisms, both

within a specific domain and across different domains, as well as their associations with

the environment, potentially leading to understanding of healing of chronic wounds.

More specifically, the study collected wound swabs from 20 patients attending an out-

patient wound care clinic. Samples were obtained from chronic wounds before and after a

debridement event, as well as from a control site on the skin. This resulted in a dataset of

60 samples from 20 subjects, along with a categorical covariate with three levels, healthy,
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pre-treatment and post-treatment. The abundance of bacteria in the samples was measured

by high-throughput sequencing of the V1–V3 loops of 16S rRNA genes, and the abundance

of viral contents by high-throughput sequencing of DNA from virus-like particles (VLPs)

isolated from the samples. Counts of bacterial OTUs (bOTU) were aggregated at the genus

level, and counts of viral OTUs (vOTUs) at the host level. To ensure reliable inference,

we removed OTUs having extremely low counts on average or having zero counts in a

significant number of samples. The preprocessing details are described in § 4. After pre-

processing, the dataset comprises counts of 75 bOTUs and 39 vOTUs in the two domains,

bacteria and viruses, for the 60 samples from the patients. Fig 1(a) shows a heatmap of

the log-transformed normalized OTU counts. The counts are normalized using cumulative

sum scaling (CSS) in Paulson et al. (2013). CSS normalization involves summing the OTU

counts up to a pre-specified quantile of a sample and generating normalized counts by

dividing the counts by the sum. The sample medians are used for the illustration. It cor-

rects potential bias introduced by total-sum normalization (TSS) in differential abundance

analysis. To avoid problems with the log transformation of zero counts, a pseudocount

of 0.01 is added. From the figure, the bOTUs exhibit higher richness in the healthy skin

samples than in the wound samples. On the other hand, the vOTUs are more enriched in

the wound samples than in the healthy skin samples. Fig 1(b) illustrates empirical correla-

tion estimates using the log-transformed normalized counts. The figure indicates potential

interactions between OTUs within and across different domains.

1.2 Statistical Challenges

Besides discreteness, microbiome data presents several challenges for statistical modeling,

including compositionality, excess zeros, high-dimensionality and large inter-sample vari-

ability. Typically, microbiome data is represented as a table of counts, where the total

number of reads can vary between samples due to experimental artifacts such as sequenc-
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ing depth. Raw counts in an OTU table thus represent only relative abundances in a

sample (i.e., compositionality), and it requires appropriate normalization of raw counts for

modeling. Supp. Fig 6 illustrates histograms of the logarithm of the total counts in the

skin microbiome dataset. The total counts greatly vary across samples, with the variability

differing according to the domain. In addition, OTU count tables contain excess zeros

because of the absence of OTUs and/or limited sequencing depth, with counts of an OTU

greatly varying due to a large amount of inter-subject or inter-sample variability. Fig 1(a)

reveals a substantial degree of variability in OTU counts among samples even after taking

into account the difference in sample total counts. The figure also illustrates excess ze-

ros in the dataset. Furthermore, in the presence of environmental factors, the underlying

data-generating structure becomes even more complicated. These make statistical analy-

sis challenging, and any method that does not address them appropriately may produce

erroneous inferences such as spurious estimates of correlations between microorganisms.

1.3 Current Approaches and Limitations

Various statistical methods have been developed to explore the associations among mi-

croorganisms, mainly with a focus on a single domain (i.e., a count table of a single group).

Typically, a covariance or precision (i.e., inverse covariance) matrix is utilized to infer the

associations. Most of these methods use a penalized estimation method after normaliz-

ing and/or transforming raw counts. The graphical lasso in Friedman et al. (2008) is

one of the popular penalized methods for estimating the precision matrix Σ−1 that forms

an undirected graph in a high-dimensional setting. In a Gaussian graphical model, the

off-diagonal values of zero and non-zero in Σ−1 represent conditional independence or de-

pendence between the OTUs. The ℓ1 penalty encourages sparsity in Σ−1. Examples of

the graphical model based approach include SPIEC-EASI (SParse InversE Covariance Es-

timation for Ecological Association Inference) (Kurtz et al., 2015), Zi-LN (Zero-inflated
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Log-Normal model) (Prost et al., 2021), Comp-gLASSO (Compositional graphical LASSO

method) (Tian et al., 2023) and PhyloBCG (Phylogenetically-informed Bayesian Copula

Graphical model) (Chung et al., 2022) among many others. All these methods are designed

for single-domain microbiome data analysis. Specifically, SPIEC-EASI first applies the cen-

tered log-ratio (clr) transformation to raw OTU counts to account for the compositionality

and discreteness. It then assumes a Gaussian distribution with mean zero and precision

matrix Σ−1 for the clr transformed data and estimates Σ−1 with the ℓ1 penalty to obtain

an interaction graph. This method was later extended to allow for multi-domain analysis

by applying the clr transformation separately to an OTU table from each domain and esti-

mating the precision matrix using a concatenated transformed composition vector (Tipton

et al., 2018). Other penalized estimation methods of the covariance matrix Σ include RE-

BECCA (Regularized Estimation of the Basis Covariance Based on Compositional Data)

(Ban et al., 2015) and COAT (COmposition-Adjusted Thresholding Method) (Cao et al.,

2019) that are developed for single group data analysis. Alternatively, low-rank approxi-

mations can be used for the estimation of Σ. For example, see MOFA (Multi-Omics Factor

Analysis) (Argelaguet et al., 2018) and ZI-MLN (Zero-inflated Multivariate Log-normal

Kernel Model) (Zhang et al., 2023). In particular, MOFA builds a Bayesian group factor

model for clr-transformed multi-group count table data. The data is recentered by sub-

tracting the sample mean for each OTU, and subsequently it assumes a normal distribution

with mean zero and covariance Σ. Σ is estimated by a factor model that assumes two-level

sparsity priors for factor loadings to obtain fast computation and robust estimation. While

there are several methods available for inferring microorganism interactions across multi-

ple domains, a need remains for more robust approaches to address the aforementioned

challenges.

We take the low-rank approximation approach and develop a sparse Bayesian group

factor model (Sp-BGFM) for the analysis of multiple multivariate count data to obtain
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desired inferences on within-domain and across-domain OTU interactions. Using the ap-

proach in Canale and Dunson (2011), Sp-BGFM builds nonparametric mixtures of rounded

multivariate continuous kernels using a Dirichlet process (DP) prior to obtain a flexible

joint distribution of count vectors. A mean-constrained mixture of log-normals is used as

the kernel to avoid identifiability problems. The covariance matrix of the kernel, which

is the parameter of main interest for understanding microorganism interactions, is esti-

mated through latent factors. For a joint prior of factor loading vectors, we construct

the Dirichlet-Horseshoe distribution to efficiently induce joint sparsity, and the model pro-

vides reliable inferences on a high-dimensional interaction structure both within and across

the domains even with a small sample size. The semiparametric formulation flexibly ac-

commodates excess zeros and inter-subject or inter-sample variability in OTU counts and

further improves the estimation of OTU interaction. Moreover, the mean function of the

kernel is extended through regression to accommodate covariates. Also, our model si-

multaneously performs model-based normalization for proper uncertainty quantification.

Extensive numerical studies show that Sp-BGFM recovers the underlying data-generating

process including within- and cross-domain interaction reasonably well and performs very

competitively compared to various comparators. The method is then applied to analyze

real multi-domain skin microbiome data.

The rest of this article is organized as follows. § 2 details the development of Sp-

BGFM and describes the prior specification and posterior computation. In § 3, we evaluate

the performance of Sp-BGF under different simulation settings and compare it to several

popular alternatives. § 4 demonstrates the application of our method to the multi-domain

skin microbiome dataset. Finally, § 5 provides a brief discussion and conclusion.
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2 Model and Posterior Inference

2.1 Sampling Distribution and Prior Specification

Consider random count vectors ofM different groups (or domains). Let yim = (yim1, . . . , yimJm)
′

denote a Jm-dimensional vector of group m of sample i, i = 1, . . . , N and m = 1, . . . ,M .

Each yimj ∈ N0, j = 1, . . . , Jm, is a non-negative integer that represents an unnormalized

abundance of OTU j of group m in sample i. We stack yim and construct a table Ym of

size N × Jm, a subset of data corresponding to group m. We assume that yi1, . . . ,yiM in

sample i are obtained from subject si, where si ∈ {1, . . . , S}. Also, data may have a vector

of P covariates, xi = (xi1, . . . , xiP ) that may be associated with yi1, . . . ,yiM .

We concatenate the vectors yim of sample i and construct yi = (y′
i1, . . . ,y

′
iM)′ a J-dim

count vector of OTUs in M different groups for sample i, where J =
∑M

m=1 Jm is the

total number of OTUs. Taking the rounded kernel approach for count data in Canale and

Dunson (2011), we introduce a continuous random vector y⋆
i ∈ RJ

+ and build a flexible

model for y⋆
i . For sample i from subject si, we assume

y⋆
i | ri,αsi ,Σ

indep∼ log-NJ(y
⋆ | ri +αsi ,Σ), i = 1, . . . , N, (1)

αsi | G
iid∼ G(α), si ∈ {1, . . . , S}. (2)

We will let G a random probability measure with a DP prior to flexibly accommodate

variability in counts across m, s and j. We will discuss the details later. We use a rounding

function and obtain the distribution of yi as follows;

P(yi = y | ri,αsi ,Σ) =

∫
A(y)

fy⋆(y⋆ | ri,αsi ,Σ) dy
⋆, (3)

where the region of integration A(y) = {y⋆ | y11 ≤ y⋆11 < y11 + 1, . . . , yMJM ≤ y⋆MJM
<

yMJM +1} and fy⋆(·) is a pdf of a J−dim log-normal distribution with parameters αsi + ri
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and Σ. In (1), αsi = [αsi1, . . . ,αsiM ]′ is a J−dim vector of OTU abundances, where a

subvector αsim = (αsimj), j = 1, . . . , Jm is for group m. ri is a vector of sample scale

factors, ri = [ri11J1 , . . . , riM1JM ]′, where rim is a scalar. rim’s account for difference in

total counts across (i,m) due to experimental artifacts. αsimj thus represents a normalized

baseline abundance of OTU j of group m in a sample taken from subject si. It is shared by

all samples from subject si, and dependence among those samples is induced. The entire

joint distribution of y in (3) can be used to infer the marginals and dependence structure

of the counts. Let µimj = αsimj+rim. exp(µimj) represents the median of y⋆imj and explains

the location of the distribution of yimj (i.e, OTU abundance). Σ > 0 is a J × J covariance

matrix, and let Σmm′

jj′ denote the element of Σ corresponding to the covariance between

OTU j of group m and OTU j′ of group m′. We have E(y⋆imj) = exp(µimj + Σmm
jj /2) and

Cov(y⋆imj, y
⋆
im′j′) = E(y⋆imj)E(y

⋆
im′j′)

{
exp(Σmm′

jj′ )− 1
}
, m,m′ ∈ {1, . . . ,M}, j ∈ {1, . . . Jm}

and j′ ∈ {1, . . . Jm′}. That is, Σmm and Σmm′
with m ̸= m′ describe the within-group

and across-group interaction structures, respectively. We will later extend the model to

accommodate xi through regression in µimj.

We next build a prior probability model for Σ, the parameter of primary interest.

To overcome difficulties due to the high dimensionality, we assume that most pairs do

not interact and consider joint sparsity, a structural assumption on Σ (also known as

sparse spiked covariance structure) (Cai et al., 2016; Xie et al., 2022). The joint sparsity

assumption allows to obtain a faster minimax rate of convergence for a frequentist estimator

and improve posterior convergence for a Bayesian estimator. We first decompose a J × J

covariance matrix Σ into Σ = ΛΛ′ + V . Here, Λ = [Λ′
1, . . . ,Λ

′
m]

′ is a J × K matrix with

J ≫ K, where Λm = [λmjk] is a Jm × K matrix. V is a J-dim diagonal matrix, where

diagonal submatrices V mm = v2mIJm and V mm′
= 0Jm×Jm′ , m ̸= m′. The within-group

and cross-group covariances are Σmm = ΛmΛ
′
m + V mm and Σmm′

= ΛmΛ
′
m′ , m ̸= m′. We

construct a Dirichlet-Horseshoe (Dir-HS) prior for columns λk of Λ to efficiently induce
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joint sparsity; for each k, k = 1, . . . , K,

τk | aτ , bτ
iid∼ Ga(aτ , bτ/J),

ϕk = (ϕ11k, . . . , ϕMJMk) | aϕ
iid∼ Dir(aϕ, . . . , aϕ),

ζmjk
iid∼ C+(0, 1), m = 1, . . . ,M, j = 1, . . . , Jm,

λmjk | ϕmjk, τk, ζmjk
indep∼ N(0, ζ2mjkϕmjkτk),

(4)

where C+(0, 1) represents the half-Cauchy distribution for R+ with location and scale pa-

rameters 0 and 1, and Ga(a, b) is the gamma distribution with mean a/b. For V , we assume

v2m | av, bv
iid∼ inv-Ga(av, bv) with fixed av and bv. In (4), while ϕk chooses active features

(OTUs) for factor k, τk’s globally control individual factors. A small value of τk indicates

that factors k is negligible in explaining dependence among the OTUs. The Dir-HS distri-

bution can be derived by integrating ϕk and ζmjk out. The Dir-HS density function lacks

an analytic form, and the following theorem finds tight bounds for the marginal density of

λmjk under the Dir-HS.

Theorem 2.1. Let J = 2. Assume ϕ1 ∼ Be(aϕ, aϕ) and let ϕ2 = 1 − ϕ1. Assume the

Dir-HS distribution in (4) as a joint distribution for λ = (λ1, λ2) ∈ R2 given τ . Without

loss of generality, let τ = 1. The marginal density ΠDir-HS(λ1) of λ1 satisfies the following:

(a) limλ1→0ΠDir-HS(λ1) = ∞. (b) For λ1 ̸= 0,

22aϕ−
5
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

4

λ21
3F 2

(
1, 1, aϕ + 1/2; 2, 2aϕ + 1/2;− 4

λ21

)
< ΠDir-HS(λ1) < 22aϕ−

3
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

2

λ21
3F 2

(
1, 1, aϕ + 1/2; 2, 2aϕ + 1/2;− 2

λ21

)
,

(5)

where pF q is the generalized hypergeometric function, pF q(α1, . . . , αp; β1, . . . , βq;x) =∑∞
t=0

(α1)t...(αp)t
(β1)t...(βq)t

xt

t!
. Especially when aϕ = 1

2
,

1√
2π5

{
sinh−1(2/|λ1|)

}2
< ΠDir-HS(λ1) <

√
2

π5

{
sinh−1(

√
2/|λ1|)

}2

, (6)
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Figure 2: Scatter plots of (λ1, λ2) simulated from Dir-HS, Dir-Laplace and independent
HS are illustrated in panels (a), (b) and (c), respectively. The contours represent their
empirical density on the logarithmic scale.

where the inverse hyperbolic sine function sinh−1(x) = log(x+
√
x2 + 1).

A proof is given in Supp. §1. From the theorem, the marginal density of λmjk has an

unbounded spike at zero for any value of aϕ similar to a HS prior (Carvalho et al., 2009).

It thus obtains severe shrinkage for any λmjk when needed, while having tail robustness,

and can achieve improved performance at handling unknown sparsity with a small num-

ber of large signals compared to other joint shrinkage priors such as the Dirichlet-Laplace

(Dir-Laplace) prior (Bhattacharya et al., 2015). Fig 2(a) has a scatterplot of (λ1, λ2) sim-

ulated from the Dir-HS with aϕ = 1/20 and τ = 1. For comparison, panels (b) and (c)

have scatterplots from the Dir-Laplace distribution and an independent HS distribution,

respectively. Specifically, for the Dir-Laplace, we assume ϕ1 ∼ Be(aϕ, aϕ), let ϕ2 = 1 − ϕ1

and λj | ϕj
indep∼ DE(τϕj), j = 1, 2, where DE(b) is the Laplace distribution with mean

0 and variance 2b2. For independent HS distributions, we assume λj | ζj
indep∼ N(0, ζ2j /2)

and ζj
iid∼ C+(0, 1), j = 1, 2 to match the scale parameter with that under the Dir-HS.

Comparing panel (a) to panel (b), the Dir-HS has heavier tails, leading to greater robust-

ness to large signals. Supp. Proposition 1.1 examines the tails of the marginal densities

ΠDir-HS(λ1) and ΠDir-Laplace(λ1) of λ1 under the Dir-HS and Dir-Laplace and shows that

limλ1→±∞ΠDir-Laplace(λ1)/ΠDir-HS(λ1) = 0. Also, note that ΠDir-Laplace(λ1) is bounded at 0
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given τ when aϕ > 1. The Dir-HS has a higher density along the axes than the indepen-

dent HS in panel (c) and enables joint sparsity. Supp. Figs 1 and 2 plot joint and marginal

densities of the distributions in the central origin and tail regions with various values of aϕ.

Previously, Zhao et al. (2016) built a group factor model for continuous responses. They

constructed a ‘global-factor-local shrinkage’ prior for the elements in a factor loading matrix

for structured sparsity. The ‘global-factor-local shrinkage’ prior was built with a hierar-

chical structure that includes global, factor-specific and element-specific hyperparameters.

Note that their prior does not induce joint sparsity. Bhattacharya et al. (2015) built a factor

model for a continuous response in a single group and considered the Dir-Laplace distri-

bution on the vector constructed by concatenating factor loading vectors. Under factor

models, Λ are only identifiable up to orthogonal transformations. Our interest is primarily

on the estimation of Σ, and this issue is not of great practical importance.

From (1)-(3), the marginal distribution of yi can be obtained by integrating α with

respect to mixing distribution G. It is critical to improving the estimation of Σ that

the model adequately accommodates large inter-subject variability in counts, which is a

common issue in microbiome data analysis. We consider the following infinite mixture

model for G in (2),

G(α) =
M∏

m=1

Jm∏
j=1

Gmj(αmj)

=
M∏

m=1

Jm∏
j=1

[
∞∑
l=1

ψα
ml

{
ωα
mlδξαmjl

+ (1− ωα
ml)δ

(
να
mj

−ωmlξ
α
mjl

1−ωα
ml

)
}]

,

(7)

where δξ is a point mass centered at ξ. We assume ξαmjl | ναmj, u
2
α

iid∼ N(ναmj, u
2
α) with

fixed ναmj and u2α. The mixture weights ψα
ml in (7) are constructed using a stick-breaking

process (Sethuraman, 1994); let ψα
m1 = V α

m1 and ψα
ml = V α

l

∏l−1
l′=1(1 − V α

ml′), ℓ > 1 with

V α
ml | cα

iid∼ Be(1, cα), where the total mass parameter cα is fixed. Assume inner mixture

weights ωα
ml | aαω, bαω

iid∼ Be(aαω, b
α
ω), where a

α
ω and bαω are fixed. Under the model in (2) and
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(7), given rim the prior and posterior medians of y⋆imj are fixed at exp(rim + ναmj). We will

impose a similar constraint on the prior of rim to avoid potential identifiability problems.

Individual parameters αsimj and rim are not identifiable, but µimj’s are identifiable. Despite

the constraint, G can capture various patterns in the distribution of α due to its inherent

flexibility (Müller et al., 2015). Specifically, the distribution of y⋆
im is a Dirichlet process

mixture with a log-normal mixture kernel (Antoniak, 1974). Also, the model in (7) allows

to efficiently borrow information across subjects and across OTUs through its hierarchical

structure and yield improved estimates of αsimj. In particular, ψα
ml’s and ω

α
ml’s are common

weights for all OTUs in group m, while the mixture locations vary by j for each m.

Recall that rim is a normalizing factor of group m of sample i. Similar to (7), we

consider a flexible infinite mixture model for rim;

rim | ψr
ml, ω

r
ml

indep∼
∞∑
l=1

ψr
ml

{
ωr
mlN(ξ

r
ml, u

2
r) + (1− ωr

ml)N

(
νrm − ωr

mlξ
r
ml

1− ωr
ml

, u2r

)}
, (8)

where νrm and u2r are fixed. The prior and posterior expectations of rim are νrm in (8).

Each group has different means, as indicated in our motivating application as illustrated

in Supp. Fig 6(a) and (b). We jointly specify values of ναmj and ν
r
m using observed counts.

For example, we first fix νrm at the average of the logarithm of the total count, νrm =

1
N

∑N
i=1 log

(∑Jm
j=1 yimj

)
, and set ναmj =

1
N

∑N
i=1 {log(yimj + 0.01)− νrm}. We consider the

following priors for ψr
ml, ω

r
ml and ξrml; assume ξrml | νrm, u2ξr

iid∼ N(νrm, u
2
ξr). Also, let ωr

ml |

arω, b
r
ω

iid∼ Be(arω, b
r
ω), ψ

r
m1 = V r

m1 and ψr
ml = V r

ml

∏l−1
ℓ′=1(1 − V r

ml′), l > 1, where V r
ml | cr

iid∼

Be(1, cr). Here, u2ξr , a
r
ω, b

r
ω, and c

r are fixed.

In addition, the model is extended to accommodate covariates xi using regression in

µimj;

µimj = rim + αsimj + x′
iβmj. (9)
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Assume βmjp
iid∼ N(0, u2β) with fixed u2β. Regression coefficients βmjp quantify the change

in the abundance of OTU j of group m from its baseline abundance by xip. Especially,

in a case of a categorical covariate, βmjp shows an effect on the baseline abundance of the

OTU for the level represented by xp, and βmjp − βmjp′ can be used to infer the effect by

the difference in levels between xp and xp′ .

2.2 Prior Calibration and Posterior Computation

The prior of Σ in (4) requires specification of fixed hyperparameters K, aϕ, aτ and bτ . The

number K of latent factors is assumed to be fixed. For cases with N ≪ J , a relatively small

value of K is more desirable to obtain reliable estimation of Σ. For our simulation studies

and real data analyses, we empirically set a value for K; we perform principle component

analysis (PCA) for the sample covariance matrix of log-transformed normalized counts and

fix K at a value such that the K largest eigenvalues explain 95% of the total variance.

Given a sufficiently large value of K, the model may let τk close to 0 for unneeded latent

factors. If desired, a prior can be considered for K, e.g., a geometric or truncated Poisson

distribution. In addition, specifications of aϕ, aτ and bτ may need careful attention. Similar

to Bhattacharya et al. (2015), we observed that estimates of λmjk tend to be overly shrunken

toward zero with aϕ = 1/J . We also observed that aϕ = 1/2 recommended in Bhattacharya

et al. (2015) for the Dir-Laplace distribution does not efficiently produce joint sparsity under

the Dir-HS distribution. After careful exploration, we used aϕ = 1/(0.2 × J), which gives

approximately 1/20 for a dataset with J ≈ 100 as in our motivating example. By setting

the scale parameter of τk to bτ/J in (4), the prior for λmjk is appropriately scaled under

the constraint
∑

m,j ϕmjk = 1. We fixed aτ = 0.1 and bτ = 1/J for the analyses in § 3 and

§ 4. We performed a thorough sensitivity analysis by varying the values of K, aϕ, aτ , and

bτ and found that the model’s performance remains robust within a reasonable range of

these values.
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Collecting terms, let θ = {λmjk, ϕmjk, τk, ζmkj, v
2
m, αsimj, ω

α
ml, V

α
ml, ξ

α
mjl, rim, ω

r
ml, V

r
ml, ξ

r
ml,

βmjp} a vector of all random parameters. We utilize Markov Chain Monte Carlo (MCMC)

simulations to generate samples of θ from their posterior distribution. To facilitate the pos-

terior computation, we introduce sample-specific latent vectors ηi
iid∼ NK(0, IK). We then

have y⋆imj | µimj,λmj,ηi, v
2
m

indep∼ log-N(µimj + λ
′
mjηi, v

2
m) as independent log-normal vari-

ables, which results in significant computational efficiency. The joint posterior distribution

of the augmented model is

p(θ,y⋆,η | y,x) ∝
N∏
i=1

M∏
m=1

Jm∏
j=1

p(yimj ≤ y⋆imj < yimj + 1 | ηi,θ)
N∏
i=1

p(ηi | θ)p(θ). (10)

We further augment the model by introducing latent variables to facilitate updates of

ri, αsi , and ζmkj. We use the blocked Gibbs sampling algorithm (Ishwaran and James,

2001) by considering a finite-dimensional truncation of the stick-breaking processes in (7)

and (8). We set the truncation levels Lr
m and Lα

m to sufficiently large values. Under

the augmented model, all model parameters except ϕk can be updated through Gibbs

steps. We use adaptive MH algorithm (Haario et al., 2001) for an efficient update of ϕk.

Details of the MCMC algorithm are in Supp. §2. An R package is available at https:

//github.com/Zsj950708/SP-BGFM.

3 Simulation

3.1 Simulation 1

For Simulation 1, we considered a case without covariates and evaluated the estimation of

interaction between OTUs in two groups. We let M = 2 with J1 = 150 and J2 = 50 OTUs.

We assumed one sample from each of S = 20 subjects, and we had N = 20. To specify

Σtr, we let Ktr = 5. We then simulated λtrmjk from N(0, 1) and shifted away from zero by

1 for OTUs 1-25 and 51-75 in group 1 and OTUs 1-25 in group 2 to ensure that those
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Figure 3: [Simulation 1] The upper right and lower left triangles of a heatmap illustrate
the estimates ρ̂mm′

jj′ of correlations and their truth, respectively. The horizontal and vertical
lines are to divide the groups. The estimates in panels (a)-(c) are from Sp-BGFM, MOFA
and SPIEC-EASI.

OTUs have large covariances. For the remaining OTUs, we let λtrmjk = 0 for all k. Thus,

80% of OTUs do not interact with the other OTUs. We then let Σtr = ΛtrΛtr,′ + V tr with

v2,trm = 0.52 for all m. Σtr is illustrated in the lower triangle of Fig 3(a). For the normalized

abundance level, we first set ξα,trmj1 = −5, ξα,trmj2 ∼ N(4, 1) and ξα,trmj3 ∼ N(10, 1) and simulated

ψtr
mj = (ψtr

mj1, ψ
tr
mj2, ψ

tr
mj3) ∼ Dir(30, 40, 30) independently for each (m, j). The three values,

ξα,trmjl , l = 1, 2 and 3, represent zero, small and large counts, respectively. We then let

αtr
simj = ξα,trmjl with probability ψtr

mjl for si ∈ {1, . . . , S}. We next simulated size factors

rtrim
iid∼ Unif(0, 2). Finally, we generated y⋆,tr

i from log-NJ(µ
tr
i ,Σ

tr) with µtr
i = rtri +αtr

si
and

obtain count vectors yi = ⌊y⋆,tr
i ⌋. Under this setup, approximately 30% of yimj’s are 0.

We specified the hyper-parameters values as discussed in § 2.2. In addition, we let

K = 10, cr = cα = 1, Lr
m = Lα

m = 50, av = bv = 3, arω = brω = aαω = bαω = 5. We ran

MCMC for 105 iterations and discarded the first half for burn-in. It took 67 minutes on an

Apple M1 chip laptop. We examined trace plots to assess the convergence and mixing of

the MCMC chain and did not observe any evidence of slow mixing and convergence issues.

For easy interpretation, we consider correlations ρmm′

jj′ = Σmm′

jj′ /(Σmm
jj Σm′m′

j′j′ ) instead of

Σ. Fig 3 (a) compares posterior median estimates ρ̂mm′

jj′ of correlations to their truth. As

shown in the figure, Sp-BGFM capably identifies zeroes in the truth and efficiently shrinks
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(a) Group 1, OTU 30 (b) Group 1, OTU 133 (c) Group 2, OTU 31

Figure 4: [Simulation 1] Posterior predictive estimates of the marginal distribution of log-
transformed counts are plotted for three arbitrarily chosen OTUs, OTUs 30 and 133 of
group 1 and OTU 31 of group 2 for model checking. Crosses are log-transformed observed
counts after normalization based on a posterior estimate of the scale factors rim.

the corresponding λmjk to zero, leading to an accurate reconstruction of the truth. We

performed predictive checking to assess model fit as follows; we first set the sample size

factors rpred = (rpred1 , rpred2 ) for an unobserved sample and estimated the posterior predictive

distribution of a count vector, Pr(ypred = y | rpred,D) =
∫
A(y)

∫
f(ỹ⋆ | rpred,θ)f(θ |

D)dθdy, where D = {Y1,Y2} denotes observed data. We approximated it with posterior

samples of θ drawn from the posterior simulation. Fig 4 illustrates marginal predictive

distribution estimates of log-transformed counts for three arbitrarily chosen OTUs with

rpredm = 0, m = 1, 2. To avoid numerical issues, we added 1 to the posterior predictive

samples of y. Log-transformed observed counts are shown with crosses after normalization

by a posterior estimate of their scale factor, i.e., log(⌊yimj/ exp(r̂im−rpredm )⌋+1), where r̂im

is a posterior estimate of rim. The comparison of the predictive density estimates to the

empirical distribution of the normalized observed counts suggests that the model offers a

good fit to the data, accounting for excess zeros and multimodality, even with N = 20 for

J = 200.

For comparison, we fit MOFA(Argelaguet et al., 2018) and SPIEC-EASI (Tipton et al.,

2018) to the simulated data. We used R packages, MOFA2 and SpiecEasi to apply their

methods. Prior to fitting, the OTU counts were clr-transformed and re-centered with
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Figure 5: [Simulation 2] The upper right and lower left triangles of a heatmap illustrate
the estimates ρ̂mm′

jj′ of correlations and their truth, respectively. The horizontal and vertical
lines are to divide the groups. The estimates in panels (a)-(c) are from Sp-BGFM, MOFA
and SPIEC-EASI, respectively.

default settings in the packages. Their correlation estimates ρ̂mm′

jj′ are compared to the truth

in Fig 3 (b)-(c). They yield poor estimates and fail to recover the true interaction structure,

potentially due to their assumption of mean zero and/or the normalization of the observed

counts prior to analysis. Additional comparison of Sp-BGFM to REBACCA(Ban et al.,

2015), COAT(Cao et al., 2019) and Zi-LN (Prost et al., 2021) that analyze a single count

table, is provided in Supp. §3. Comparing their estimates to the truth, those alternative

methods perform poorly in uncovering the true dependence among the OTUs.

3.2 Simulation 2

For Simulation 2, we kept M = 2, J1 = 150, J2 = 50, S = 20 and N = 20 the same as in

Simulation 1. We generated an arbitrary covariance matrix to specify Σtr; we used the vine

method in Lewandowski et al. (2009) and generated a random J × J correlation matrix

based on partial correlations. In particular, we simulated partial correlations from linearly

transformed Be(1, 1) distribution over the interval of (−1, 1). To encourage sparsity in Σtr,

we set the partial correlations below 0.8 to 0 and generated a correlation matrix, ρmm′,tr
jj′

using their recursive formula. We then sampled vtrmj independently from Unif(1, 1.5) and
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(a) Group 1 OTU 67 (b) Group 1 OTU 118 (c) Group 2 OTU 47

Figure 6: [Simulation 2] Posterior predictive estimates of the marginal distribution of log-
transformed counts for three arbitrarily chosen OTUs, OTUs 67 and 118 of group 1 and
OTU 47 of group 2 for model checking. Crosses are log-transformed observed counts after
normalization based on a posterior estimate of the scale factors rim.

let Σmm′,tr
jj′ = vtrmjv

tr
m′j′ρ

mm′,tr
jj′ . Σtr is shown in the lower triangle of Fig 5(a). The OTUs

are rearranged within a group for a better illustration. For abundances, we computed the

empirical proportions ψ̃mj of zero counts in the multi-domain skin microbiome dataset in § 4.

To set the values of ψtr
mj1 for a group, we sampled with replacement from the corresponding

set of ψ̃mj. We let ψtr
mj2 = 0.6× (1−ψtr

mj1) and ψ
tr
mj2 = 0.4× (1−ψtr

mj1). We then specified

ξα,trmjl and simulated αtr
si
, rtri , y

⋆
i and yi the same as done in Simulation 1. Approximately

40% of the counts in the dataset were zero, which is comparable to the proportion of

zeros in the skin microbiome dataset. We used the same fixed hyperparameter values

as in Simulation 1, and we approximated the posterior distribution using MCMC. The

examination of the MCMC simulation using traceplots indicated no evidence of convergence

or mixing problems.

Fig 5(a) compares posterior estimates ρ̂mm′

jj′ of correlations (upper triangle) to the truth

(lower triangle). Recall that ρmm′,tr
jj′ is specified arbitrarily. Sp-BGFM effectively recovers

the underlying interaction structure with a high degree of accuracy even in a case of N = 20

and J = 200. To assess the fit of the model, we compared predictive distribution estimates

to the empirical distribution of the normalized observed counts, using a procedure the same

as that employed in Simulation 1. Marginal posterior predictive distribution estimates of
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Figure 7: [Simulation 3] The upper right and lower left triangles of a heatmap illustrate
estimates ρ̂mm′

jj′ of correlations and their truth, respectively. The horizontal and vertical
lines are to divide the groups. The estimates in panels (a)-(c) are from Sp-BGFM, MOFA
and SPIEC-EASI, respectively.

some selected OTUs are illustrated with the normalized observed counts in crosses in Fig 6.

The plots do not show any systematic discrepancy and indicate a reasonable model fit.

In addition, correlation estimates are obtained from MOFA and SPIEC-EASI and com-

pared to the truth in Fig 5(b) and (c). Supp. Fig. 4 compares correlation estimates under

the additional comparators, REBACCA, COAT and Zi-LN, to the truth. The comparators

fail to capture the true dependence structure. Our Sp-BGFM yields superior estimates of

ρmm′

jj′ and outperforms the other methods in comparison.

3.3 Simulation 3

For Simulation 3, we built upon the set-up of Simulation 2 and incorporated a categorical

covariate with two levels to investigate the estimation of βmjp and Σ in a complex setting.

To represent the two levels, we introduced a pair of binary indicators xi = (xi1, xi2) ∈

{(1, 0), (0, 1)}. We generated two samples for each of the S = 20 subjects, one from each

of the levels, resulting in a total of N = 40 samples. We set βtr
mj1 = 0 for all (m, j). We

let βtr
mj2 = 0 with probability 0.8. For non-zero βtr

mj2, we simulated βtr
mj2 ∼ N(0, 1/3) and

shifted away from zero by 1. We simulated rtrim, α
tr
simj and Σtr the same as in Simulation

2. We then let µtr
imj = rtrim + αtr

simj + x′
iβ

tr
mj and generated y⋆,tr

i from log-NJ(µ
tr
i ,Σ

tr). We
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Figure 8: [Simulation 3] Posterior estimates of covariate effect βmj1 − βmj2 under Sp-BGFM
are plotted against the truth in panels (a) and (b) for two groups, m = 1 and 2. The pos-
terior median estimates are denoted by dots, and the 95% credible estimates with vertical
lines. In panels (c) and (d), the estimates of βmjp under metagenomeSeq are plotted for
two groups.

finally let count vectors yi = ⌊y⋆,tr
i ⌋, and the overall zero count rate is 45%.

The fixed hyperparameters are specified the same as those in Simulations 1 and 2. For

the prior of βmjp, we set u
2
β = 3. The MCMC simulation, consisting of 105 iterations, took

approximately 98 minutes to complete on an Apple M1 chip laptop. We discarded the first

half of the iterations as burn-in, and the remaining half was used for making inferences.

The trace plots demonstrated a good mixing of the MCMC chain.

The upper triangle of Fig 7(a) illustrates the posterior estimates ρ̂mm′

jj′ under Sp-BGFM.

Fig 8(a) and (b) show the posterior median estimates of βmj1 − βmj2 (dots) with their

95% credible interval estimates (vertical lines) for groups 1 and 2, respectively. Sp-BGFM
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(a) Group 1 OTU 12 (e) Group 1 OTU 32 (f) Group 2 OTU 11

Figure 9: [Simulation 3] Posterior predictive estimates of the marginal distribution of log-
transformed counts for three arbitrarily chosen OTUs, OTUs 1 and 32 of group 1 and OTU
161 of group 2 for model checking. Dots and crosses are log-transformed observed counts
after normalization based on a posterior estimate of the scale factors rim for x =(1, 0) and
(0, 1), respectively. The solid and dashed lines represent the conditions with x =(1, 0) and
(0, 1), respectively.

performs well in capturing the true within-domain and across-domain dependence structure

among the OTUs, despite the arbitrary specification of Σtr and the added complexity due

to the covariate in the true data generating process. In addition, the covariate effects are

well estimated.

We also check the model fit using posterior predictive checking. We set rpredm = 0 for

m = 1, 2 and estimate the distribution of ypred for the two conditions, x = (1, 0) and (0, 1),

similar to the procedure used in Simulation 1. The predictive distribution estimates are

illustrated in Fig 9 for some selected OTUs. The solid and dashed lines are for conditions,

x = (1, 0) and (0, 1), respectively. The observed normalized counts are shown with dots

and crosses on the top of the figures after log transformation. For the OTUs in the figure,

posterior estimates of βmj1 − βjm2, are 1.68, -2.65 and 2.07 with 95% credible intervals

(0.98, 2.26), (-3.44, -2.02), and (1.11, 2.92), respectively. Their true values are 2.15, -2.42,

and 1.97, respectively. The figures show an adequate model fit under Sp-BGFM and depict

the covariate’s impact on the prediction of counts for those OTUs.

Fig 7(b) and (c) compare the correlation estimates obtained from MOFA and SPIEC-

EASI to the truth. The estimates from the additional comparators, REBACCA, COAT and
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Zi-LN, are shown in Supp. Fig. 5. The estimates of the comparators are very poor and fail

to recover Σtr, potentially due to a lack of consideration for covariates and/or assumption

of mean zero. In addition, we compare our Sp-BGFM to metagenomeSeq (Paulson et al.,

2013) in the estimation of βmjp. MetagenomeSeq transforms counts log2(yimj + 1) and

builds a zero-inflated normal mixture model. For the non-zero part, the mean function is

modeled through regression. It uses the CSS normalization method to estimate sample size

factors and includes as an offset to account for differences between samples in sequencing

depth. Fig 8(c) and (d) illustrate point estimates of βmj1 − βmj2 under metagenomeSeq.

MetagenomeSeq does not provide interval estimates. Comparison of the plots in panels

(a) and (b) to those in panels (c) and (d) suggests that Sp-BGFM offers more accurate

estimates of covariate effects with uncertainty quantification.

4 Multi-domain Skin Microbiome Data Analysis

To fit Sp-BGFM for the multi-domain skin microbiome data, we removed OTUs having

extremely low counts on average or having zero counts in too many samples. In particu-

lar, we included only the OTUs that have a non-zero count in at least two samples under

each condition and average count larger than ten under each condition for analysis. After

pre-processing, 75 bOTUs and 39 vOTUs were left for analysis, so J1 = 75 and J2 = 39.

The proportions of zeros are 42.97% and 44.10% for bOTUs and vOTUs, respectively. Em-

pirical correlation estimates ρ̃mm′

jj′ among the OTUs are computed using the OTU counts

normalized using CSS, and illustrated in the lower triangle of Fig 10(a). The fixed hy-

perparameters were specified at the same values as in the simulation studies of § 3. We

implemented posterior inference using MCMC posterior simulation. The Markov chain ran

for 105 iterations, and the initial half was discarded as burn-in. The posterior simulation

took approximately 4.82 minutes for every 10,000 iterations on an Apple M1 chip laptop.

The trace plots indicated that the MCMC chain mixed well.
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Figure 10: [Multi-domain skin microbiome] The upper right triangle of the heatmaps in (a)-
(c) has correlation estimates ρ̂mm′

jj′ under Sp-BGFM, MOFA and SPIEC-EASI, respectively.

Empirical correlation estimates ρ̃mm′

jj′ are shown in the lower triangles.

The upper right triangle of Fig 10(a) illustrates posterior median estimates ρ̂mm′

jj′ of

correlations. The OTUs are rearranged within a group for a better illustration. Supp. Fig

7 illustrates ρ̂mm′

jj′ for the OTUs that have |ρ̂mm′

jj′ | > 0.5 with any other OTU j′, j′ ̸= j.

Supp. Tabs 1 and 2 have taxonomic information of those OTUs. Here, 0.5 is an arbitrary

choice to illustrate a smaller set of OTUs that have large estimates. While the overall

estimated interaction structure is sparse, some OTU subsets within a group have large

positive values of ρ̂mm
jj′ . Interestingly, many of these OTUs have zero counts across samples

concurrently, potentially suggesting potential microbial co-existence patterns. Specifically,

the genera, Actinomyces, Actinotignum, Campylobacter, Helcococcus and Porphyromonas,

which are bOTUs 3, 4, 10, 24 and 56, respectively, have large positive correlation es-

timates with ρ̂mm
jj′ ≥ 0.72, m = 1. Previous research has indicated potential relations

between some of the species of those OTUs. Actinomyces and Helcococcus are facultative

aerobics found in patients with diabetic foot osteomyelitis (Van Asten et al., 2016). Addi-

tionally, Actinomyces infections are known to be polymicrobial where major concomitant

or coinfecting microbes include species of Campylobacter and Phorphylomonas (Könönen

and Wade, 2015). In the oral microbiome, species of Actinomyces, Campylobacter, and

Porphyronomas are also known to be related to periodontal diseases (Noiri et al., 1997).
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Synergistic interactions between the microbes of these OTUs have not been found in chronic

wounds. However, the identified positive correlations align with previous findings under

other biological contexts and support further investigations into the relationship between

these bacterial species in the context of chronic wound healing. In addition, vOTUs 2,

9, 10, 13, 29, 32, 34 and 38 are estimated to have ρ̂mm
jj′ ≥ 0.65, m = 2 with each other,

implying that they coexist and their abundance is related with that of the others. Espe-

cially, vOTUs 2, 9, 10 and 13, corresponding to Aquisalimonas phage, Grimontella phage,

Klebsiella phage, and Methylomonas phage, are annotated. With the exception of Kleb-

siella which is a pathogen in the human microbiome, little is known about those phage

hosts. Correlations among the phages reflect potential interactions among the hosts, the

phages, or the phages and hosts, and the results may suggest the need for further studies

to gain additional biological context. The overall cross-domain interaction is scarce, except

for Staphylococcus aureus (bOTU 65), a prominent skin pathogen. Interestingly, it has a

negative correlation estimate with a subset of phages, vOTU 2, 6, 8, 9, 10, 13, 28, 29, 31,

32, 34, 36 and 38, that are positively correlated with each other. The colonization of S. au-

reus is found associated with dysbiosis of skin microbiota (Di Domenico et al., 2019). The

negative correlations may suggest potential adversarial relationships between S. aureus and

these phages (or their host) and call for further investigation to enhance our understanding

of the underlying biological process. Additionally, the pair, Pseudomonas (bOTU 59) and

Pseudomonas phage (vOTU 18), is estimated to have a positive correlation 0.38, aligning

with their inherent relationship label (Pseudomonas - Pseudomonas phage).

Fig 11 illustrates inference on covariate effects βmjp − βmjp′ , p ̸= p′. Recall that βmjp,

p = 1, 2 and 3, quantify changes in abundance compared to the baseline abundance. In

the figure, dots represent the posterior median estimates of βmjp − βmjp′ , while vertical

lines illustrate their 95% credible interval estimates. The interval estimates that do not

contain zero are in bold. Supp. Tabs 1 and 2 have taxonomic information of the OTUs
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Figure 11: [Multi-domain skin microbiome] The left and right columns display the posterior
median estimates of βmjp − βmjp′ for bacterial and viral OTUs, respectively. Vertical lines
represent their corresponding 95% credible interval estimates. The interval estimates that
do not include 0 are marked in red bold.

whose interval estimates do not contain zero. Overall, the bOTUs tend to be enriched in

the healthy condition compared to the pre- and post-debridement conditions. In contrast,
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vOTUs tend to be enriched in the pre- and post-debridement conditions. Changes in abun-

dance between pre- and post-debridement conditions are relatively minimal for bOTUs and

vOTUs. Within the wound samples, vOTUs 1, 18 and 23, corresponding to Acinetobacter

phage, Proteus phage and Staphylococcus phage, are founded enriched as also reported in

Verbanic et al. (2022). Similar to the findings in Fig 2 of Verbanic et al. (2020), bOTUs

27, 29 and 53, corresponding to the genera, Kocuria, Micrococcus and Paracoccus, are

significantly more abundant in the healthy skin samples.

Supp. Fig. 8 illustrates posterior predictive density estimates of an OTU’s count under

the different conditions for some selected OTUs, bOTUs 1, bOTU 69 and vOTU 17. The

figure demonstrates the effects of the experimental conditions on the prediction. Overall,

the comparison of the posterior predictive density estimates to empirical distributions of

the observed counts indicates a reasonable model fit to the data.

For comparison, we applied MOFA and SPIEC-EASI to the skin microbiome data.

Fig 10(b) and (c) illustrate ρ̂mm′

jj′ under the comparators. The estimates from the addi-

tional comparators, REBACCA, COAT and Zi-LN, are in Supp. Fig. 9. Supp. Fig. 10

illustrates estimates of covariate effects under metagenomeSeq. Note that the comparators

for estimating OTU interactions do not take into account covariates, and metagenomeSeq

that estimates covariate effects does not consider potential interactions among OTUs.

5 Conclusions

We developed Sp-BGFM, a sparse Bayesian group factor model for analyzing multiple count

tables data from multi-domain microbiome studies. The Dir-HS distribution was developed

to efficiently induce joint sparsity and used as a prior for factor loadings. The model pro-

duces a reliable estimate of covariance matrices even with small sample sizes. Additionally,

Sp-BGFM incorporates nonparametric mixtures of multivariate rounded kernels to capture

inter-subject variability and improves inference on the dependence structure. The model
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also accommodates covariates through regression. Simulation studies and real data analysis

confirm the robust performance of Sp-BGFM compared to other alternatives. The model

is applicable to the analysis of multiple count tables data in any application.

Sp-BGFM can be extended by relaxing the model assumptions even further. For in-

stance, one possible extension is to incorporate a hierarchical Dirichlet process (HDP) in

Teh et al. (2004) or a common atom model as proposed in Denti et al. (2023). These ap-

proaches allow for the construction of domain and OTU specific distributions using a hier-

archical structure. In particular, an HDP enables Gmj in (2) to share mixture components,

while the mixture weights differ across OTUs. Another extension involves using a fully

nonparametric regression model to accommodate covariates x in a more flexible manner.

This can be achieved through a dependent Dirichlet process (DDP) model (MacEachern,

1999, 2000) by letting ψα
ml and/or ξ

⋆
mjl of Gmj in (2) depend on x. The distribution of y

is marginally a DP-distributed random probability distribution that varies flexibly with x.

The DDP model possesses desirable theoretical properties, such as full support (Barrientos

et al., 2012). It is important to note that while these extended models offer greater flexi-

bility, they may require a sufficiently large sample size to obtain inference with reasonable

uncertainty bounds.

An interesting avenue for future research would be to integrate taxonomy rank informa-

tion into the analysis. In microbiome studies, the widely used 16S rRNA gene sequencing

produces a phylogenetic tree estimate that contains crucial phylogenetic information on

the evolutionary relationships among OTUs. Because closely related organisms often share

similar characteristics, we may improve the estimation of interactions between OTUs by

incorporating a phylogenetic tree into the analysis (Washburne et al., 2018). For example,

Chung et al. (2022) incorporated the branch split information by using a latent position

model and built a truncated Gaussian copula model. Adapting a similar idea, Sp-BGFM

can be extended by introducing taxonomy level specific factor loadings, e.g. ΛT
m, where T
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is a taxonomy level in the phylogenetic tree. By letting OTUs have latent factor loadings

according to their phylogeny, the interaction structure that integrates the phylogenetic re-

latedness among OTUs can be obtained. This approach has the potential to enhance the

inference of interaction structures in other domains, such as the virome, as well as improve

the overall understanding of the interaction patterns across multiple domains.

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY: The Supplement contains an examination of the properties of

the Dir-HS distribution and a detailed description of the MCMC sampling algorithm.

Additionally, it presents additional results from simulation studies and the analysis

of multi-domain skin microbiome data. (pdf file)
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1 Properties of the Dirichlet-Horseshoe Distribution

We assume a Dirichlet-Horseshoe (Dir-HS) distribution for λ and examine the marginal

distribution of λj. For a simple illustration, we consider a bivariate case with J = 2. The

Dir-HS distribution of λ = (λ1, λ2) can be expressed as follows; first assume

ϕ1 ∼ Be(aϕ, aϕ), and let ϕ2 = 1− ϕ1,

ζj
iid∼ C+(0, 1), j = 1, 2,

λj | τ, ϕj, ζj
indep∼ N(0, ζ2j ϕjτ), j = 1, 2.

(1)

∗Address for Correspondence: 1156 High St, Santa Cruz, CA 95064. E-mail: szhan209@ucsc.edu.
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The Dir-HS distribution of λ can be obtained by integrating out ζj and ϕ1. Note that a

gamma prior is placed for τ in (4) of the main text, while τ is assumed to be fixed in (1).

Theorem 2.1 of the main text provides the bounds of the marginal density of λ1 under a

Dir-HS distribution in (1), and a proof is given below.

Proof. From the construction, we have

ΠDir-HS(λ1) =

∫ 1

0

Π(λ1 | ϕ1)p(ϕ1)dϕ1, where Π(λ1 | ϕ1) =

∫ ∞

0

Π(λ1 | ζ1, ϕ1)p(ζ1)dζ1.

We recognize that Π(λ1 | ϕ1) is the HS distribution given ϕ1, and we find the bounds of

Π(λ1 | ϕ1) using Theorem 1 in Carvalho et al. (2010);

2−
3
2π− 3

2ϕ
− 1

2
1 log

(
1 +

4ϕ1

λ21

)
< Π(λ1 | ϕ1) < 2−

1
2π− 3

2ϕ
− 1

2
1 log

(
1 +

2ϕ1

λ21

)
.

Under the beta prior Be(aϕ, aϕ) for ϕ1, the bounds for Π(λ1) are

2−
3
2π− 3

2
Γ(2aϕ)

Γ(aϕ)Γ(aϕ)

∫ 1

0

ϕ
aϕ− 3

2
1 (1− ϕ1)

aϕ−1 log

(
1 +

4ϕ1

λ21

)
dϕ1, (2)

and

2−
1
2π− 3

2
Γ(2aϕ)

Γ(aϕ)Γ(aϕ)

∫ 1

0

ϕ
aϕ− 3

2
1 (1− ϕ1)

aϕ−1 log

(
1 +

2ϕ1

λ21

)
dϕ1. (3)

We use the Taylor expansion of log
(
1 + 4ϕ1

λ21

)
, log

(
1 + 4ϕ1

λ21

)
=

∞∑
k=1

(−1)k+1(4ϕ1/λ21)
k

k
and com-

plete the integrals. Using the results in Gradshteyn and Ryzhik (2014), we then obtain the

2



lower bound,

2−
3
2π− 3

2
Γ(2aϕ)

Γ(aϕ)Γ(aϕ)

∫ 1

0

ϕ
aϕ− 3

2
1 (1− ϕ1)

aϕ−1 log

(
1 +

4ϕ1

λ21

)
dϕ1

= 2−
3
2π− 3

2
Γ(2aϕ)

Γ(aϕ)Γ(aϕ)

∞∑
k=1

Γ(aϕ)Γ(aϕ + k − 1/2)

Γ(2aϕ + k − 1/2)

(−1)k+1(4/λ21)
k

k

= 22aϕ−
5
2π−2 4

λ21

∞∑
k=0

Γ(aϕ + 1/2)Γ(aϕ + k + 1/2)

Γ(2aϕ + k + 1/2)

(−4/λ21)
k

k + 1

= 22aϕ−
5
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

4

λ21

∞∑
k=0

Γ(k+1)
Γ(1)

Γ(k+1)
Γ(1)

Γ(aϕ+k+1/2)

Γ(aϕ+1/2)

Γ(k+2)
Γ(2)

Γ(2aϕ+k+1/2)

Γ(2aϕ+1/2)

(−4/λ21)
k

k!

= 22aϕ−
5
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

4

λ21
3F 2

(
1, 1, aϕ + 1/2; 2, 2aϕ + 1/2;− 4

λ21

)
,

(4)

where generalized hypergeometric series pF q(α1, . . . , αp; β1, . . . , βq;x) =
∑∞

t=0
(α1)t...(αp)t
(β1)t...(βq)t

xt

t!
.

We obtain the upper bound in a similar fashion,

2−
1
2π− 3

2
Γ(2aϕ)

Γ(aϕ)Γ(aϕ)

∫ 1

0

ϕ
aϕ− 3

2
1 (1− ϕ1)

aϕ−1 log

(
1 +

2ϕ1

λ21

)
dϕ1

= 22aϕ−
3
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

2

λ21
3F 2

(
1, 1, aϕ + 1/2; 2, 2aϕ + 1/2;− 2

λ21

)
.

(5)

When aϕ = 1/2, the integrals in (2) and (3) are in a simpler form;

(
1√
2π5

log2

(
2

|λ1|
+

√
4

λ21
+ 1

)
,

√
2

π5
log2

(√
2

|λ1|
+

√
2

λ21
+ 1

))
.

We next compare the marginal density of a Dir-HS to that of a Dir-Laplace. Recall that

we set J = 2. The Dir-Laplace is defined as follows; given τ ,

ϕ1 ∼ Be(aϕ, aϕ), and let ϕ2 = 1− ϕ1,

λj | ϕj
indep∼ DE(τϕj), j = 1, 2,

(6)

where DE(b) is the Laplace distribution with mean 0 and variance 2b2. The model in

3



Bhattacharya et al. (2015) places a gamma prior on τ .

Proposition 1.1. Let ΠDir-HS(λ1) denote the marginal distribution of λ1 obtained from the

Dir-HS distribution in (1) for λ = (λ1, λ2) ∈ R2 with τ ∈ R+. Similarly, Let ΠDir-Laplace(λ1)

denote the marginal distribution of ϕ1 obtained from the Dir-Laplace distribution in (6) for

λ = (λ1, λ2) with fixed τ . The limits of the ratio of ΠDir-Laplace(λ1) to ΠDir-HS(λ1) are

lim
λ1→±∞

ΠDir-Laplace(λ1)

ΠDir-HS(λ1)
= 0. (7)

Proof. Without loss of generality, we fix τ = 1. From the construction of Dir-Laplace

distributions, we have the marginal distribution

ΠDir-Laplace(λ1) =

∫ 1

0

1

2ϕ1

e
− |λ1|

ϕ1
Γ(2aϕ)

Γ(aϕ)Γ(aϕ)
ϕ
aϕ−1
1 (1− ϕ1)

aϕ−1dϕ1

=
Γ(2aϕ)

2Γ(aϕ)Γ(aϕ)

∫ 1

0

ϕ
aϕ−2
1 (1− ϕ1)

aϕ−1e
− |λ1|

ϕ1 dϕ1.

From (4), we have

ΠDir-Laplace(λ1)

ΠDir-HS(λ1)
≤

Γ(2aϕ)

2Γ(aϕ)Γ(aϕ)

∫ 1

0
ϕ
aϕ−2
1 (1− ϕ1)

aϕ−1e
− |λ1|

ϕ1 dϕ1

22aϕ−
5
2π−2Γ(aϕ + 1/2) 4

λ21

∑∞
k=0

Γ(aϕ+k+1/2)

Γ(2aϕ+k+1/2)

(−4/λ21)
k

k+1

. (8)

We first observe e
− |λ1|

ϕ1 /ϕ1 ≤ e−|λ1| for any 0 < ϕ1 < 1 if |λ1| > 1. Given |λ1| > 1, we have

Γ(2aϕ)

2Γ(aϕ)Γ(aϕ)

∫ 1

0

ϕ
aϕ−2
1 (1− ϕ1)

aϕ−1e
− |λ1|

ϕ1 dϕ1 ≤
e−|λ1|

2
.

Then from (8) we have

Γ(2aϕ)

2Γ(aϕ)Γ(aϕ)

∫ 1

0
ϕ
aϕ−2
1 (1− ϕ1)

aϕ−1e
− |λ1|

ϕ1 dϕ1

22aϕ−
3
2π−2Γ(aϕ + 1/2) 2

λ21

∑∞
k=0

Γ(aϕ+k+1/2)

Γ(2aϕ+k+1/2)

(−2/λ21)
k

k+1

≤
e−|λ1|

2

22aϕ−
3
2π−2Γ(aϕ + 1/2) 2

λ21

∑∞
k=0

Γ(aϕ+k+1/2)

Γ(2aϕ+k+1/2)

(−2/λ21)
k

k+1

4



and observe

lim
λ1→±∞

e−|λ1|

2

22aϕ−
3
2π−2Γ(aϕ + 1/2) 2

λ21

∑∞
k=0

Γ(aϕ+k+1/2)

Γ(2aϕ+k+1/2)

(−2/λ21)
k

k+1

= 0.

Therefore, we obtain (7).

Proposition 1.1 compares tails of the Dir-HS and Dir-Laplace distributions and states

a Dir-HS distribution has heavier tails than a Dir-Laplace distribution.

We next use numerical simulations and examine joint distributions of λ = (λ1, λ2)

assuming Dir-HS, Dir-Laplace and independent HS distributions. We fix τ = 1 for the

Dir-HS and Dir-Laplace distributions. For the independent HS distributions, we generate

λj | ζj
indep∼ N(0, ζ2j /2) and ζj

iid∼ C+(0, 1), j = 1, 2 to match the scale parameter with that

under the Dir-HS. We vary the value of aϕ to examine how it affects the joint distributions.

Figs 1 and 2 illustrate the joint densities with aϕ = 2, 1/2 and 1/20. As explained in

the main text with aϕ = 1/20, Dir-HS distributions have higher densities along the axes

than the independent HS distributions. It illustrates joint sparsity under the Dir-HS by

shrinking one component toward zero more than the other component. Compared to the

Dir-Laplace, the Dir-HS has thicker tails. The Dir-HS has unbounded density around zero

for any value of aϕ, but the Dir-Laplace has bounded density around zero if aϕ > 1.

2 Details of Posterior Computation

We use Markov chain Monte Carlo (MCMC) techniques to obtain samples of the random pa-

rameters θ from their posterior distributions, where θ = {λmjk, ϕmjk, τk, ζmkj, v2m, αsimj, ωαml,

V α
ml, ξ

α
mjl, rim, ω

r
ml, V

r
ml, ξ

r
ml, βmjp}. Recall that Yimj ∈ N0, i = 1, . . . , N , m = 1, . . . ,M and

j = 1, . . . , Jm denotes the count of OTU j of group m in sample i, rim the sample size

factor of group m of sample i, and αsimj the normalized baseline abundance level of OTU

j of group m in sample i obtained from subject si = 1, . . . , S. We also have covariate X, a
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Figure 1: Marginal densities of λ1 are numerically evaluated at the central and tail areas
for the Dir-HS prior, Dir-Laplace, and HS with different values of aϕ, aϕ = 2, 1/2, 1/20.
The Dir-HS, Dir-Laplace and independent HS distributions are in black, red and blue,
respectively.
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Figure 2: Scatter plots of λ = (λ1, λ2) are shown. λ are generated from three different
prior distributions: Dir-HS in the leftmost column, Dir-Laplace in the middle column, and
independent HS priors in the rightmost column. The values of aϕ used for the plots are 2,
1/2, and 1/20 for the top, middle, and bottom plots, respectively. The contour plots of the
empirical joint densities are shown in red on a logarithmic scale.

N × P covariate matrix whose rows have a P−dim covariate vector xi.

To facilitate the posterior simulation, we introduce the latent continuous variable y⋆imj ∈

R+ and have yimj = ⌊y⋆imj⌋. We then impute y⋆imj = exp(ỹ⋆imj) from a truncated log-normal
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distribution

ỹ⋆imj | θ,ηi, yimj ∼ N(rim + αsimj + λ
′
mjηi + x′

iβmj, v
2
m)1(log(yimj) ≤ ỹ⋆imj < log(yimj + 1)).

Given ỹ⋆imj, parameters βmj, ηi, and v
2
m can be conveniently updated through normal/inv-

gamma Gibbs steps. For ζmjk, we utilize the following to achieve conjugacy (Makalic and

Schmidt, 2015);

ζmjk
iid∼ C+(0, 1) ⇔ ζ2mjk | Zmjk

iid∼ inv-Ga

(
1

2
,

1

Zmjk

)
, Zmjk

iid∼ inv-Ga

(
1

2
, 1

)
. (9)

ζmjk can be easily updated via Gibbs steps. Also, recall that parameters ri and αsi are from

infinite mixtures of mixtures. For computational convenience, when fitting the model, we

approximate the infinite mixtures in (5) and (6) of the main text by truncating the number

of mixture components to Lα and Lr. The final weights ψαmLα = 1−
∑Lα−1

l=1 ψαml and ψ
r
mLr =

1−
∑Lr−1

l=1 ψrml is set to ensure the distributions are proper. With sufficiently large Lα and

Lr, the truncated process produces inference almost identical to that with the infinite

process (Ishwaran and James, 2001). We further introduce a pair of membership variables

(Irim1, I
r
im2) with I

r
im1 ∈ {1, . . . , Lr} and Irim2 ∈ {0, 1} for each rim and (Iαsimj1, I

α
simj2

) with

Iαsimj1 ∈ {1, . . . , Lα} and Iαsimj2 ∈ {0, 1} for each αsimj. We then assume P(Irim1 = l) =

ψrml and P(Irim2 = 0 | Irim1 = l) = ωrml, and similarly, assume P(Iαsimj1 = l) = ψαml and

P(Iαsimj2 = 0 | Iαsimj1 = l) = ωαml. Given the membership indicator vectors, the conditional
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distributions of rim and αsimj are

rim | ψr,ωr, ξr, Irim1 = l, Irim2 ∼


N(ξrml, u

2
r) if Irim2 = 1,

N(
vrm−ωr

mlξ
r
ml

1−ωr
ml

, u2r) if Irim2 = 0,

αsimj | ψα,ωα, ξα, IαSimj1
= l, IαSimj2

=


ξαmjl if Iαsimj2 = 1,

vαmj−ωα
l ξ

α
ml

1−ωα
l

if Iαsimj2 = 0.

Given the latent variables, all parameters except ϕk are updated through Gibbs steps. We

update ϕk using a Metropolis-Hastings step. We let ϕ⋆mjk
iid∼ Ga(aϕ, 1) and have ϕmjk =

ϕ⋆mjk/
∑

m′, j′ ϕ
⋆
m′j′k. The full conditional of ϕk is given by

p(ϕk | −) ∝ p(λk | τk,ϕk, ζk)p(ϕk) ∝
M∏
m=1

Jm∏
j=1

N(λmjk | 0, ζ2mjkϕmjkτk)
M∏
m=1

Jm∏
j=1

Ga(ϕ⋆mjk | aϕ, 1).

To efficiently update ϕk, the adaptive MH algorithm (Haario et al., 2001) is applied to

adjust the MH step size according to the acceptance ratio, and the convergence rate is

accelerated.

We sample sequentially by alternating conditional sampling. The full conditionals are

given below;

• Update ỹ⋆imj given yimj, rim, αSimj,λmj,ηi, v
2
m,βmj,xi

ỹ⋆imj ∼ N(rim + αSimj + λ
′
mjηi + x′

iβmj, v
2
m)1(log(yimj) ≤ ỹ⋆imj < log(yimj + 1)).

• parameters related to rim

– Update ψr
m given Irim1

ψr
m ∼ Dir(aψr +

N∑
i=1

1(Irim1 = 1), . . . , aψr +
N∑
i=1

1(Irim1 = Lr)).
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– Update ωrml given I
r
im1, I

r
im2

ωrml ∼ Be(arω +
N∑
i=1

1(Irim1 = l, Irim2 = 1), brω +
N∑
i=1

1(Irim1 = l, Irim2 = 0)).

– Update (Irim1, I
r
im2) given ψ

r
ml, ω

r
ml, rim, v

r
m, ξ

r
ml, u

2
r

Pr(Irim1 = l, Irim2 = 1) ∝ ψrmlω
r
mlN(rim | ξrml, u2r),

Pr(Irim1 = l, Irim2 = 0) ∝ ψrml(1− ωrml)N(rim | ν
r
m − ωrmlξ

r
ml

1− ωrml
, u2r),

– Update ξrml given I
r
im1, I

r
im2, rim, ω

r
ml

ξrml ∼ N

ũ2ξr( νrmu2ξr +
∑

i:Irim1=l,I
r
im2=1

rim
u2r

−
∑

i:Irim1=l,I
r
im2=0

ωr
ml

1−ωr
ml
rim − ωr

ml

(1−ωr
ml)

2ν
r
m

u2r
), ũ2ξr

 ,

where ũ2ξr = (1/u2ξr +
∑N

i=1 1(I
r
im1 = l, Irim2 = 1)/u2r + ωr,2ml

∑N
i=1 ω

r
ml1(I

r
im1 =

l, Irim2 = 0)/u2r(1− ωrml)
2)−1.

– Update rim given αSimj,λmj,ηi,βmj

rim ∼ N

(
(
c

u2r
+

∑Jm
j=1(ỹ

⋆
imj − αSimj − λ′

mjηi − x′
iβmj)

σ2
m

)(
1

u2r
+
Jm
σ2
m

)−1, (
1

u2r
+
Jm
σ2
m

)−1

)
,

where prior mean c =
∑Jm

j=1(1(I
r
im2 = 1)ξrm,Irim1

+ 1(Irim2 = 0)
νrm−ωr

m,Ir
im1

ξr
m,Ir

im1

1−ωr
m,Ir

im1

).

• parameters related to αsimj

– Update ψα
m given IαSimj1

ψα
m ∼ Dir(aψα +

N∑
i=1

Jm∑
j=1

1(IαSimj1
= 1), . . . , aψα +

N∑
i=1

Jm∑
j=1

1(IαSimj1
= Lα)).
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– Update ωαml given I
α
Simj1

, IαSimj2

ωαml ∼ Be(aαω+
N∑
i=1

Jm∑
j=1

1(IαSimj1
= l, IαSimj2

= 1), bαω+
N∑
i=1

Jm∑
j=1

1(IαSimj1
= l, IαSimj2

= 0)).

– Update (Iαsmj1, I
α
smj2) given ψ

α
ml, ω

α
ml

Pr(Iαsmj1 = l, Iαsmj2 = 1) ∝ ψαmlω
α
ml

∏
i:Si=s

N(ỹ⋆imj | rim + ξαml + λ
′
mjηi + x′

iβmj, v
2
m),

Pr(Iαsmj1 = l, Iαsmj2 = 0) ∝ ψαml(1− ωαml)
∏

i:Si=s

N(ỹ⋆imj | rim +
ναmj−ωα

mlξ
α
mjl

1−ωr
ml

+ λ′
mjηi

+x′
iβmj, v

2
m).

– Update ξαmjl given ỹ
⋆
imj, rim,λ

′
mj,ηi,xi,βmj

ξαmjl ∼ N(ũ2α(ν
α
mj/u

2
α +

∑
i:IαSimj1=l,I

α
Simj2=1

(ỹ⋆imj − rim − λ′
mjηi − x′

iβmj)/v
2
m −

∑
i:IαSimj1=l,I

α
Simj2=0

(
ωα
ml

1−ωα
ml
(ỹ⋆imj − rim − λ′

mjηi − x′
iβmj)−

ωα
ml

(1−ωα
ml)

2ν
α
mj)/v

2
m), ũ

2
α),

where ũ2α = (1/u2α+
∑N

i=1 1(I
α
Simj1

= l, IαSimj2
= 1)/v2m+ωα,2ml

∑N
i=1 ω

α
ml1(I

α
Simj1

=

l, IαSimj2
= 0)/v2m(1− ωαml)

2)−1.

• Update λmj given Y
⋆
mj, rm,αmj,X,βmj,η, ζmj,ϕmj, τ

λmj ∼ N((v−2
m η

′η + V −2
λ )−1v−2

m η
′(Ỹ ⋆

mj − rm −αmj −Xβmj), (v
−2
m η

′η + V −2
λ )−1),

where Vλ = diag(ζ2mj1ϕmj1τ1, . . . , ζ
2
mjKϕmjKτK).

• Update ϕk using adaptive M-H algorithm by proposing from a normalized Ga(aϕ, 1).

We let ϕ⋆mjk
iid∼ Ga(aϕ, 1) and have ϕ = (ϕ1, . . . , ϕJ) ∼ Dir(aϕ, . . . , aϕ) with ϕmjk =
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ϕ⋆mjk/
∑

j′ ϕ
⋆
mj′k. The full conditional of ϕk is given by

p(ϕk | −) ∝
M∏
m=1

Jm∏
j=1

N(λmjk | 0, ζ2mjkϕmjkτk)
M∏
m=1

Jm∏
j=1

Ga(ϕ⋆mjk | aϕ, 1).

We reject or accept the proposal by utilizing the adaptive MH algorithm (Haario

et al., 2001).

• Update ζ2mjk given Zmjk, λmjk, ϕmjk, τk

ζ2mjk ∼ inv-Ga(1, 1/Zmjk + λ2mjk/(2ϕmjkτk),
M∑
m=1

Jm∑
j=1

(λ2mjk/ϕmjkτk)).

• Update Zmjk given ζmjk
indep∼ inv-Ga(1, 1 + 1/ζ2mjk).

• Update τk | λmjk, ζmjk, ϕmjk

τk ∼ Generalized inverse Gaussian (aτ − J/2, 2bτ ,
M∑
m=1

Jm∑
j=1

λ2mjk/ζ
2
mjkϕmjk).

• Update ηi given Λ, V,Y ⋆
i , ri,αsi ,β,Xi

ηi ∼ N((IK + Λ′V −1Λ)−1Λ′V −1(Y ⋆
i − ri −αsi − βXi), (IK + Λ′V −1Λ)−1).

• Update βmj given Ỹ
⋆
mj, rm,αmj,λmj,η,X

βmj ∼ N((v−2
m X′X+ v−2

β Ip)
−1v−2

m X′(Ỹ ⋆
mj − rm −αmj − ηλmj), (v−2

m X′X+ v−2
β Ip)

−1).

• Update v2m given ỹ⋆imj, rim, αSi,j,λ
′
mj,ηi,xi,βmj

v2m ∼ inv-Ga

(
av + n× Jm/2, bv +

n∑
i=1

Jm∑
j=1

(ỹ⋆imj − rim − αSi,j − λ′
mjηi − x′

iβmj)
2/2

)
.
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3 Additional Simulation Results

We present results from additional comparators REBACCA(Ban et al., 2015), COAT(Cao

et al., 2019) and Zi-LN (Prost et al., 2021) for Simulations 1-3 presented in §3 of the

main text. The comparators are for a single group count table analysis. To apply those

methods for count table data of two groups, we first combined Y1 of size N × J1 and

Y2 of size N × J2 and had a single count matrix of N × J with J = J1 + J2. We then

applied their normalization or transformation procedures for those methods. REBECCA

uses sample proportions by normalizing the observed data by the total number of counts

and estimates the covariance matrix of the log-transformed latent basis abundances with

the ℓ1 penalty. COAT further develops REBECCA using a procedure of thresholding the

sample centered log-ratio covariance matrix. It can avoid optimization and is scalable

for large covariance matrices. Zi-LN is a likelihood-based zero-inflation model on a single

transformed count table. Zi-LN normalizes the observed counts using a modified centered

log-ratio (clr) transformation prior to analysis to account for zeros, and uses graphical

lasso for estimating the precision matrix. The three methods do not include covariates in

their model. The upper triangles of the heatmaps in Figs 3-5 illustrate the estimate of the

correlations ρ̂jj′ obtained from the additional comparators for Simulations 1-3. The true

values ρtrjj′ of the correlations are shown in the lower triangles of the heatmaps. Compared

to the estimate under Sp-BGFM in panel (a) of Figs 2, 4 and 6 of the main text, the

comparators perform poorly and do not capture the true interaction patterns among OTUs

both within and across groups. This could be due to limitations such as a single-domain

analysis and/or failure to account for inter-subject heterogeneity and/or covariates.
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Figure 3: [Simulation 1] The upper right and lower left triangles of a heatmap illustrate
the estimates ρ̂mm

′

jj′ of correlations and their truth, respectively. The horizontal and vertical
lines are to divide the groups. The estimates in panels (a)-(c) are from REBACCA, COAT
and Zi-LN.
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Figure 4: [Simulation 2] The upper right and lower left triangles of a heatmap illustrate
the estimates ρ̂mm

′

jj′ of correlations and their truth, respectively. The horizontal and vertical
lines are to divide the groups. The estimates in panels (a)-(c) are from REBACCA, COAT
and Zi-LN.

4 Additional Results from Multi-domian Skin Micro-

biome Data Analysis

In this section, we present additional results from the multi-domain skin microbiome data

analysis. Fig 6 illustrates histograms of the logarithm of the sample total counts for each

group (domain). The distributions are different by groups, which indicates the need for
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Figure 5: [Simulation 3] The upper right and lower left triangles of a heatmap illustrate
the estimates ρ̂mm

′

jj′ of correlations and their truth, respectively. The horizontal and vertical
lines are to divide the groups. The estimates in panels (a)-(c) are from REBACCA, COAT
and Zi-LN.

separately modeling rim for each group.

Fig 7 illustrates ρ̂mm
′

jj′ for the OTUs that have |ρ̂mm′

jj′ | > 0.5 with any other OTU j′,

j′ ̸= j. Here, 0.5 is an arbitrary choice to illustrate a smaller set of OTUs that have

large estimates. Tabs 1 and 2 have taxonomic information of the OTUs whose abundance

changes statistically significantly by any of the experimental conditions or the OTUs that

have |ρ̂mm′

jj′ | > 0.5 with any other OTUs.

Fig 8 has posterior predictive density estimates of log-transformed counts for some

selected OTUs, bOTU 1, bOTU 69 and vOTU 17, where black solid, red and blue dashed

represent healthy, pre-debridement and post-debridement conditions, respectively. We set

rpredm = 0 for m = 1 and 2. Red crosses represent log-transformed observed counts after

normalization, log(⌊yimj/ exp(r̂im − rpredm )⌋ + 1), where r̂im is a posterior estimate of rim.

Posterior estimates of βmj2 − βmj1, βmj3 − βmj1 and βmj3 − βmj2 are 0.340, 1.384 and 1.036

with 95% credible intervals (-0.914, 1.522), (0.227, 2.521) and (-0.134, 2.244), respectively

for bOTU 1, -1.571, -1.633 and -0.062 with 95% credible intervals (-2.832, -0.321), (-2.869,

-0.397) and (-1.294, 1.164), respectively for bOTU 69, and 5.118, 5.146 and 0.037 with 95%

credible intervals (3.935, 6.299), (3.916, 6.372) and (1.078, 1.104), respectively for vOTU
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Figure 6: [Multi-domain skin microbiome data] Histograms of the logarithm of the sample
total counts log(

∑
j Yimj) are shown for the bacterial and viral groups in the left and right

panels, respectively.

17.

Fig 9 plots correlation estimates from the additional comparators, REBACCA, COAT

and Zi-LN. Recall that the methods are developed for a single-domain microbiome data

analysis and do not include covariates. Compared to the estimates under Sp-BGFM pre-

sented in the main text, the comparators produce very dense correlation estimates. Fig 10

shows the estimates of coefficient effects βmjp − βmjp′ under metagenomeSeq.
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Figure 7: [Multi-domain skin microbiome data] Posterior correlation estimates ρ̂mm
′

jj′ (upper

right triangle) and empirical correlation estimates ρ̃mm
′

jj′ (lower left triangle) are plotted for

the OTUs having |ρ̂mm′

jj′ | > 0.5
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(a) Bacterial OTU 1 (b) Bacterial OTU 69 (c) Viral OTU 17

Figure 8: [Multi-domain skin microbiome data] In panels (a)-(c), posterior predictive den-
sity estimates of log-transformed counts log(ypred+1) are plotted for some OTUs. Solid, blue
and red dashed lines denote healthy, pre-debridement and post-debridement conditions, re-
spectively. Log-transformed observed counts are plotted with crosses after normalization.
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Figure 9: [Multi-domain skin microbiome data] The upper right triangle of the heatmaps
in panels (a)-(c) illustrates the correlations estimates ρ̂mm

′

jj′ under REBACCA, COAT and

Zi-LN, respectively. The lower left triangles have the empirical correlation estimate ρ̃mm
′

jj′ .
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(a) β1j2 − β1j1 (b) β2j2 − β2j1

(c) β1j3 − β1j1 (d) β2j3 − β2j1

(e) β1j3 − β1j2 (f) β2j3 − β2j2

Figure 10: [Multi-domain skin microbiome] The point estimation of regression coefficient
effect βmjp − βmjp′ under metagenomeSeq is plotted in panels (a) - (f).
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Table 1: [Multi-domain skin microbiome data] Taxonomic information of the bacterial
OTUs whose abundance changes statistically significantly by any of the experimental con-
ditions (in blue) or the OTUs that have |ρ̂mm′

jj′ | > 0.5 with any other OTUs. The OTUs

that have |ρ̂mm′

jj′ | > 0.5 and abundances significantly changing by an experimental condition
are in blue italic.

OTU Phylum Class Order Family Genus/Genus species
B1 Proteobacteria Alphaproteobacteria Rhizobiales Brucellaceae Unassigned
B2 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter
B3 Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinomyces
B4 Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinotignum
B5 Firmicutes Clostridia Clostridiales Family XI Anaerococcus
B6 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
B7 Actinobacteria Actinobacteria Micrococcales Brevibacteriaceae Brevibacterium
B8 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas
B9 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Burkholderia-Paraburkholderia
B10 Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter
B11 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium
B12 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium 1
B14 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Enhydrobacter
B15 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Enterobacter
B19 Firmicutes Clostridia Clostridiales Ruminococcaceae Fastidiosipila
B20 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Unassigned
B21 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unassigned
B22 Actinobacteria Actinobacteria Micrococcales Micrococcaceae Glutamicibacter
B24 Firmicutes Clostridia Clostridiales Family XI Helcococcus
B25 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unassigned
B26 Actinobacteria Actinobacteria Micrococcales Micrococcaceae Kocuria
B27 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Massilia
B28 Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium
B29 Actinobacteria Actinobacteria Micrococcales Micrococcaceae Micrococcus
B30 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Moraxella
B31 Actinobacteria Actinobacteria Micrococcales Unassigned Unassigned
B32 Unassigned Unassigned Unassigned Unassigned Unassigned
B33 Unassigned Unassigned Unassigned Unassigned Unassigned
B34 Unassigned Unassigned Unassigned Unassigned Unassigned
B35 Unassigned Unassigned Unassigned Unassigned Unassigned
B37 Actinobacteria Actinobacteria Micrococcales Dermabacteraceae Unassigned
B38 Unassigned Unassigned Unassigned Unassigned Unassigned
B39 Unassigned Unassigned Unassigned Unassigned Unassigned
B40 Unassigned Unassigned Unassigned Unassigned Unassigned
B41 Unassigned Unassigned Unassigned Unassigned Unassigned
B42 Unassigned Unassigned Unassigned Unassigned Unassigned
B44 Firmicutes Bacilli Lactobacillales Aerococcaceae uncultured
B45 Unassigned Unassigned Unassigned Unassigned Unassigned
B46 Unassigned Unassigned Unassigned Unassigned Unassigned
B48 Unassigned Unassigned Unassigned Unassigned Unassigned
B50 Unassigned Unassigned Unassigned Unassigned Unassigned
B51 Unassigned Unassigned Unassigned Unassigned Unassigned
B52 Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides
B53 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus
B55 Firmicutes Clostridia Clostridiales Family XI Peptoniphilus
B56 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas
B57 Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Propionibacterium
B58 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Proteus
B60 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Ralstonia
B62 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Salmonella
B63 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Serratia
B64 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas
B65 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus aureus
B67 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus cohnii
B69 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus haemolyticus
B70 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus hominis
B72 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus pettenkoferi
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Table 2: [Multi-domain skin microbiome data] Taxonomic information of the viral OTUs
whose abundance changes statistically significantly by any of the experimental conditions
(in blue) or the OTUs that have |ρ̂mm′

jj′ | > 0.5 with any other OTUs. The OTUs that have

|ρ̂mm′

jj′ | > 0.5 and abundances significantly changing by an experimental condition are in
blue italic.

OTU Type Resolution
V1 Acinetobacter phage Defined
V2 Aquisalimonas phage Defined
V3 Bacillus phage Defined
V6 Citrobacter phage Defined
V8 Enterobacter phage Defined
V9 Grimontella phage Defined
V10 Klebsiella phage Defined
V11 Leptotrichia phage Defined
V12 Mannheimia phage Defined
V13 Methylomonas phage Defined
V15 Prevotella phage Defined
V17 Proteus phage Defined
V18 Pseudomonas phage Defined
V21 Staphylococcus aureus phage Defined
V23 Staphylococcus phage Defined
V24 Streptococcus phage Defined
V25 Stx2-converting phage Defined
V26 Vibrio phage Defined
V27 Yersinia phage Defined
V28 Unknown host type Ambiguous
V29 Other phage Ambiguous
V30 Other phage Ambiguous
V31 Other phage Ambiguous
V32 Other phage Ambiguous
V33 Unknown host type Ambiguous
V34 Other phage Ambiguous
V35 Other phage Ambiguous
V36 Other phage Ambiguous
V37 Other phage Ambiguous
V38 Other phage Ambiguous
V39 Other phage Ambiguous
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