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Abstract

Understanding covariate-dependent interdependencies among features is of great in-
terest in various applications. Motivated by a dataset of multivariate counts from a
microbiome study, where microbial abundance and interaction patterns may change
with environmental factors, we develop a Bayesian covariate-dependent factor model
that flexibly estimates heteroscedasticity in the covariance matrix due to covariates.
Our approach employs covariance regression through linear regression on a lower-
dimensional factor loading matrix. This formulation, combined with joint sparsity
induced by the Dirichlet-Horseshoe prior for the factor loadings, provides robust es-
timation of covariate-dependent covariance in high-dimensional settings. The model
uses a regression approach to the mean abundance and addresses the varying mean
and covariance structure with covariates. Furthermore, the model tackles significant
statistical challenges such as discreteness, over-dispersion, compositionality, and high
dimensionality that are common in microbiome data analyses, using a flexible non-
parametric Bayesian approach. We thoroughly explore the properties of the model
and perform extensive simulation studies to examine its performance. Real data
examples from microbiome studies are used for illustration.
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1 Introduction

Covariance estimation is a fundamental task in multivariate statistical analysis, critical

for understanding the relationships between variables. Covariance matrices play a pivotal

role in various statistical methods, including principal component analysis (Pearson, 1901),

factor analysis (Rummel, 1988), and canonical-correlation analysis (Hotelling, 1992). Con-

ventional methods for covariance estimation, such as the sample covariance matrix and

covariance estimators with structural assumptions Fan et al. (2013), typically assume that

the data is identically and independently distributed (i.i.d.). However, this assumption

is often violated in real-world scenarios, where data often exhibits heteroscedasticity and

covariance changes with covariates. Ignoring these covariate dependencies can result in

inaccurate models and misleading conclusions, necessitating the development of methods

that account for these dependencies to provide sensible estimates of the interrelationships

between variables. The problem is more challenging for high-dimensional data, whose

dimension can be much larger than the sample size.

Covariance regression has gained significant attention over a long history due to its abil-

ity to incorporate covariate information, thereby enhancing the accuracy and interpretabil-

ity of covariance estimates. Carroll and Ruppert (1982) first considered a heteroscedastic

model in which the variances were given by a parametric function of the mean. More meth-

ods such as a linear model for the standard deviation(Rutemiller and Bowers, 1968) and a

generalized model with a link function to allow non-negativity of variance (Smyth, 1989)

were also developed for uni-variate cases. When it comes to multivariate heteroscedasticity,

Leonard and Hsu (1992), Chiu et al. (1996) and Pourahmadi (2011) modeled the logarithm

of elements of the covariance matrix as a linear function of known matrices to guarantee the

positive definiteness of the covariance matrix. However, it is difficult to interpret parameters

of covariate effects in the log scale and the number of parameters to estimate can be quite

large in high-dimensional data. More recently, sparse and low-rank methods for covariate-
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dependent covariance estimation or its inversion (precision matrix) have been considered to

manage high-dimensional data where traditional methods are often inadequate. These ap-

proaches leverage structural assumptions, sparsity and low rankness, to enhance estimation

accuracy and interpretability. Zhang and Leng (2012) modeled Cholesky decomposition of

covariance matrix as linear functions of covariates with a moving average construction.

Hoff and Niu (2012) expressed the covariance as a baseline covariance matrix plus a rank-1

positive definite matrix which depends on covariates. They further extended to allow the

deviation of each covariate-dependent covariance from the baseline to be any rank. Fox

and Dunson (2015) put a Gaussian process prior on the latent factor model and induced

a flexible Bayesian nonparametric covariance regression model. The predictor-dependent

framework was characterized as a combination of Gaussian process random functions of

covariates. Ni et al. (2019) proposed a graphical regression method that estimates directed

acyclic graphs for the precision matrix in heterogenous data with additional subject-level

covariates. Niu et al. (2023) further modeled continuously varying undirected graphs with

additional assistance from any general covariates for underlying heterogeneous multivariate

observations.

Besides modeling the covariance matrix with covariates, joint modeling for means and

covariances allows for the simultaneous exploration of covariate effects on the mean and the

covariance of a variable(s) of interest. Pourahmadi (1999) provided a joint mean-covariance

model with applications to longitudinal data. In the context of temporal heteroscedastic-

ity, Fong et al. (2006) studied multivariate autoregressive conditionally heteroscedastic

(ARCH) models in the financial data. Niu and Hoff (2019) extended their model in Hoff

and Niu (2012) to a joint mean and covariance model, studying the covariate effects on

both mean and covariance in the application of multiple health outcome measures. Moran

et al. (2021) used a parametric covariance regression model to analyze verbal autopsy data.

It was designed specifically for cause of death denoted covariance. However, the above
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approaches are built for continuous data, and they can be inappropriate for analyzing mul-

tivariate count data. With the advent of high-throughput sequencing (HTS) sequencing

technologies, multivariate count tables arise in various biological applications for statistical

analyses. Especially in microbiome studies, 16S ribosomal RNA (16S rRNA) sequencing

uses similarity-based clustering algorithms to group 16S rRNA sequences into Operational

Taxonomic Units (OTUs), producing multivariate count tables for downstream analysis.

An OTU represents a group of organisms classified together based on genetic sequence

similarity. Analyzing OTU tables and detecting the structure of microbial interactions is

essential for more accurately characterizing microbial communities. Popular methods in

microbiome studies such as SparCC (Friedman and Alm, 2012), CCLasso (Fang et al., 2015)

and SPIEC-EASI (Kurtz et al., 2015) adopt log-transformed counts or log-transformed ratio

for analysis of interactions. Specifically, SparCC (Friedman and Alm, 2012) adds pseudo

counts and then divides the raw counts by the sample’s total counts for normalization.

It models log-transformed ratios of these normalized counts to infer correlations between

OTUs through sparse networks. Similarly, CCLasso in Fang et al. (2015) uses ℓ1 penalty

to estimate the correlation network of log-transformed counts. SPIEC-EASI (Kurtz et al.,

2015) uses graphical lasso (Friedman et al., 2008), a popular penalized method outputting

the association of undirected graphs, to obtain a robust precision matrix estimate. The

raw OTU counts are also first centered by log-ratio (clr) transformation. See REBECCA

(Ban et al., 2015), COAT (Cao et al., 2019) and MOFA (Argelaguet et al., 2018) for more.

However, most methodologies above simply subtract the sample mean and assume the

mean centered at 0. In addition, those covariance estimates remain the same across any

covariates.

To circumvent the challenges described above and address the effect of covariates on

microbial interactions, we propose a Bayesian covariate-dependent sparse factor model with

a rounded kernel. The model assesses interrelationships between OTUs varying as a func-
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tion of covariates. Furthermore, it simultaneously performs model-based normalization and

flexibly accommodates large variability in count data. Specifically, we use nonparametric

mixtures of rounded multivariate log-normal kernels to introduce latent continuous random

variables. The covariance matrix of the kernels is then allowed to vary with covariates, char-

acterizing the covariate-varying interrelationships among OTUs. We adopt the low-rank

structure factor model and place a Dir-HS prior (Zhang et al., 2025) on the factor loading

matrix to effectively learn a high-dimensional covariance structure despite a limited sample

size. Moreover, we use a Dirichlet process (DP) prior on relative abundances to obtain a

flexible joint distribution of count vectors. This nonparametric approach that models the

mean counts flexibly handles excess zeros and overdispersion, common in microbiome data.

We also relate covariates to the mean to detect different OTU abundances under covariates.

In the rest of the paper, we describe the model and its applications. § 2 and § 3

describe the covariate-dependent rounded multivariate log-normal kernel model, its prior

specification and posterior computation. § 4 shows the results of simulation studies to

evaluate the performance of our method. § 5 has results from the model applied to the real

dataset, and § 6 concludes with some discussion of the results and areas of future research.

2 Model and Prior Specification

In this section, we first construct a Bayesian sparse factor model that allows factor loadings

to vary with covariates, enabling the estimation of covariate-dependent covariance matrices.

We then develop a rounded kernel model with a mean regression function to accommodate

the discreteness of count data. This model employs a Bayesian nonparametric approach,

providing a flexible joint distribution for multivariate count responses.
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2.1 Sparse Covariate-dependent Factor Model

Let Ỹ ⋆ = (Ỹ ⋆
1 , . . . , Ỹ

⋆
J ) ∈ RJ be a J-dimensional normal vector,

Ỹ ⋆ | µ(x),Σ(x) indep∼ NJ(µ(x),Σ(x)), (1)

where x = (x1, . . . , xP ) is a P -dimensional vector of covariates for the sample, with x1 = 1

representing the intercept. We first build a prior probability model for the covariate-

dependent covariance Σ(x), the main parameter of interest. The covariates in µ may differ

from those in Σ depending on the context of the problem. We will discuss a model for

µ(x) later in § 2.2. To overcome the difficulty posed by high dimensionality, particularly

when the sample size is much smaller than the number of features, i.e., N ≪ J , we extend

the spiked covariance structure assumption (Johnstone, 2001). Specifically, we decompose

Σ(x) into a low-rank matrix and a diagonal matrix, and construct a factor model with

factor loadings that vary with x;

Σ(x) = Λ(x)Λ′(x) + σ2IJ , (2)

where Λ(xi) = [λjk(x)], j = 1, . . . , J and k = 1, . . . , K, is a J × K covariate-dependent

factor loading matrix. Here, K is the dimension of the subspace that is assumed to capture

statistical variability, and typically we have K ≪ J . Similar to Bhattacharya and Dunson

(2011) and Xie et al. (2018), we do not impose any constraints on Λ(x), such as column

orthogonality, nor do we seek to interpret latent factors, as our primary focus is on the

inference of Σ(x). We further express λjk(x) as

λjk(x) = qjkf
′
kx. (3)
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Here, fk is a P -dimensional coefficient vector that accommodates covariate effects for factor

k. While the effect f ′
kx is shared by all features, qjk adjusts it for feature j. When the

local effect qjk is close to 0, the corresponding λjk becomes small. If fkp ≈ 0, λjk(x) do not

vary with xp for all j’s. If fkp is small for all k and p, Σ(x) does not change with x much.

With (2) and (3), we can rewrite

Σ(x) =
K∑
k=1

(qkf
′
kx)(x

′fkq
′
k) + σ2IJ , (4)

where qk = (q1k, . . . , qJk)
′. The covariance between features j and j′ is a sum ofK quadratic

functions of x;

Σjj′(x) =
K∑
k=1

qjkqj′k(f
′
kx)

2 + σ21(j = j′), (5)

and it can flexibly capture various shapes in a reasonable range of x. The structure in (4)

has JK +KP unknown parameters and significantly reduces the number of parameters to

estimate compared to a case of estimating a J × J matrix Σ for each x. This reduction is

crucial in a high-dimensional setting.

In addition to the spiked covariance structural assumption, we further assume joint

sparsity on Σ(x) by employing a Dirichlet-Horseshoe (Dir-HS) prior in Zhang et al. (2025)

for qk; for k = 1, · · · , K,

τk | aτ , bτ
iid∼ Ga(aτ , bτ/J),

ϕk = (ϕ1k, . . . , ϕJk) | aϕ
iid∼ Dir(aϕ, . . . , aϕ),

ζjk
iid∼ C+(0, 1), j = 1, . . . , J,

qjk | ϕjk, τk, ζjk
indep∼ N(0, ζ2jkϕjkτk), j = 1, . . . , J.

(6)

where C+(0, 1) is the half-Cauchy distribution for R+ with location and scale parameters

0 and 1, and Ga(a, b) represents the gamma distribution with mean a/b. Under the model

in (4) with the prior in (6), ϕjk locally shrinks qjk towards zero, which in turn shrinks
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λjk(x). On the other hand, τk controls the global shrinkage for each factor and performs

an effective truncation of the number of latent factors. The joint sparsity assumption leads

to obtaining a reliable estimate of the structure with a small sample size and achieving

good theoretical properties (Cai et al., 2015; Xie et al., 2018). Zhang et al. (2025) dis-

cussed theoretical properties of the Dir-HS distribution that achieves heavy tails with a

sharp peak at zero and showed that it efficiently induces joint sparsity and performs the

robust estimation of a covariance matrix in a high-dimensional setting. Compared to the

covariance-regression models discussed earlier (Fox and Dunson, 2015; Moran et al., 2021;

Hoff and Niu, 2012), our model is more parsimonious due to (3), while the form in (4)

remains flexible enough to capture non-traditional patterns. Furthermore, the structural

assumption with joint sparsity enables robust estimation in a high-dimensional setting more

efficiently. We demonstrate this in § 4.2 with simulation studies, where the true underlying

covariance matrix is an arbitrary function of a covariate.

To complete the prior specification for Σ(x), we assume a conditionally conjugate prior

on σ2, σ2 ∼ inv-Ga(aσ, bσ) with fixed aσ and bσ and a standard normal prior on fkp
iid∼

N(0, 1).

2.2 A Flexible Model for Multivariate Count Responses

Next, we use the latent factor models with covariate-dependent factor loadings in § 2.1 as

a building block and build a Bayesian nonparametric mixture model with a rounded kernel

to obtain a flexible multivariate count distribution whose mean and covariance vary with

x.

We have N samples, for which we have observed J-dimensional random count vectors

Yi = (Yi1, . . . , YiJ), i = 1, . . . , N , of the features with covariates xi. We introduce a latent

multivariate log-normal vector Y ⋆
i = exp(Ỹ ⋆

i ) ∈ RJ
+ and assume Ỹ ⋆

i ’s are an independent

sample from the model in (1). We next build a joint distribution for count vector Yi using
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a rounded kernel in Canale and Dunson (2011);

P(Yi = y | µ(xi),Σ(xi)) =

∫
A(y)

fy⋆(y⋆ | µ(xi),Σ(xi))dy
⋆, (7)

where the region of integration A(y) = {y⋆ | y1 ≤ y⋆1 < y1 + 1, . . . , yJ ≤ y⋆J < yJ + 1}

and fy⋆(·) is the probability density function of a J−dimensional log-normal distribution

with parameters µ(xi) and Σ(xi). The multivariate log-normal density is zero for a vector

with negative values, and the kernel defines a valid multivariate count distribution for

Yi. exp(µij) is the median of Y ⋆
ij and provides an inference on the abundance of feature

j in sample i. We consider the model in § 2.1 for Σ(xi). We have the mean E(Y ⋆
ij) =

exp(µij+
1
2
Σjj(xi)) and Cov(Y ⋆

ij , Y
⋆
ij′) = E(Y ⋆

ij)E(Y
⋆
ij′) {exp(Σjj′(xi))− 1}. When Σjj′(xi) =

0, it implies there are no microbial interactions between features. In terms of the count

distributions, the mean and covariance of Yi can be easily verified finite and computed

through probability mass function defined in (7). We illustrate the distributions of y

obtained under the rounded kernel model with specific examples in Supp. S 2.

We relate µi(xi) to covariates xi through regression;

µij(xi) = µij = ri + αj + x̃
′
iβj, (8)

where x̃i is xi without intercept xi1. ri is the sample (library) size factor, normalizing

counts across samples. αj represents the normalized baseline abundance of feature j. Re-

gression coefficients βjp quantify the change in the abundance of feature j from its baseline

abundance αj by covariate xip. We consider the conditionally conjugate prior distribution

for βjp and let βjp
iid∼ N(0, u2β) with fixed u2β.

We take a Bayesian nonparametric approach and construct a flexible prior model for αj

to account for the large variability among features. This flexible modeling of mean abun-

dances may further enhance the estimation of Σ(xi). While βj and ri+αj are identifiable,
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the individual parameters ri and αj in (8) are not identifiable due to the multiplicative

structure, E(y⋆ij | ri, αj) ∝ exp(ri + αj). However, since the primary inferential goal is to

estimate βjp, this non-identifiability does not impact the inference of interest. To mitigate

potential computational issues, we impose a mean-constrained Dirichlet process prior for

αj as follows;

αj | G
iid∼ G =

∞∑
l=1

ψα
l

{
ωα
l δξαl + (1− ωα

l )δ
(

να−ωα
l
ξα
l

1−ωα
l

)
}
, j = 1, . . . , J, (9)

where δξ is a point mass centered at ξ. We let ξαl | να, u2α
iid∼ N(να, u2α), l = 1, 2, . . .,

with fixed να and u2α. The outer mixture weights ψα
l in (9) are constructed using a stick-

breaking process (Sethuraman, 1994); let ψα
1 = V α

1 and ψα
l = V α

l

∏l−1
l′=1(1−V α

l′ ), l > 1 with

V α
l | cα iid∼ Be(1, cα), where the concentration parameter cα is fixed. Assume inner mixture

weights ωα
l | aαω, bαω

iid∼ Be(aαω, b
α
ω), where a

α
ω and bαω are fixed. Under (9), the prior and

posterior means of αj are fixed at να. We will impose a similar constraint on the prior of

ri below to achieve soft identifiability. Shuler et al. (2021) and Zhang et al. (2025) showed

that overall means can be well estimated under the mean-constrained prior. Under the

model in (1) and (9), we obtain a Dirichlet process mixture model for Y ⋆
i ,

Y ⋆
i | µ(x̃i),Σ(xi)

indep∼
∫

log-NJ(y
⋆ | ri1J +α+ βx̃′

i,Σ(xi))
∏
j

dG(αj), (10)

where α = [α1, . . . , αJ ]
′ and β is a J × P coefficient matrix with βj in the rows. With

randommixture weights, ωα
l and ψα

l , and random locations ξαl inG(α), the mixture model in

(10) can flexibly capture various shapes of a distribution and accommodate variability in the

count distribution. We also consider an extension of the model in (8)-(10) to accommodate

inter-subject heterogeneity. We illustrate it in Simulations 2 and 3 in detail.
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Similar to (9), we consider a flexible infinite mixture model for ri;

ri | ψr
l , ω

r
l

iid∼
∞∑
l=1

ψr
l

{
ωr
lN(ξ

r
l , u

2
r) + (1− ωr

l )N

(
νr − ωr

l ξ
r
l

1− ωr
l

, u2r

)}
, (11)

where νr and u2r are fixed. The prior and posterior expectations of ri are fixed νr in (11).

We jointly specify values of να and νr using observed counts. For example, we first fix

νr at the average of the logarithm of the total count, νr = 1
N

∑N
i=1 log

(∑J
j=1 yij

)
, and

set να = 1
NJ

∑N
i=1

∑J
j=1 {log(yij + 0.01)− νr}. We consider similar following priors for

ψr
l , ω

r
l and ξrl ; assume ξrl | νr, u2ξr

iid∼ N(νr, u2ξr), ω
r
l | arω, brω

iid∼ Be(arω, b
r
ω), ψ

r
1 = V r

1 and

ψr
l = V r

l

∏l−1
ℓ′=1(1−V r

l′ ), l > 1, where V r
l | cr iid∼ Be(1, cr). Here, u2ξr , a

r
ω, b

r
ω, and c

r are fixed.

3 Prior Calibration and Posterior Computation

The prior of Σ(x) in (6) requires the specification of the fixed hyperparameters K, aϕ, aτ

and bτ . Selecting the dimension of the latent space K can be challenging. K determines the

number of parameters, and a model with a random K requires complicated algorithms such

as a reversible jump Markov Chain Monte Carlo (MCMC) method (Green and Hastie, 2009)

for posterior simulation. Instead, we set K at a reasonably large value for computational

convenience. For example, we empirically determine a value of K by performing principle

component analysis (PCA) on the sample covariance matrix of log-transformed normalized

counts and fixing K such that the K largest eigenvalues explain 95% of the total variance.

With a sufficiently large K, the model can let some τk small for redundant latent factors. If

desired, a geometric or truncated Poisson prior distribution can be placed on K to achieve

an optimal posterior contraction rate (Pati et al., 2014). In terms of the hyperparameters

aϕ, aτ and bτ , we follow the setup in Zhang et al. (2025) and let aϕ = 1/(0.2 × J), aτ =

0.1 and bτ = 1/J . From simulation studies, we observed that a too small value of aϕ

tends to overly shrink qjk toward zero, resulting in a poor estimate of Σ(x). We also
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examined sensitivity to the specifications of those hyperparameters and found that the

model’s performance remains robust within a reasonable range of those values.

Let θ = {qjk, ϕjk, τk, ζjk, fkp, σ
2, αj, ω

α
l , V

α
l , ξ

α
jl, ri, ω

r
l , V

r
l , ξ

r
l , βjp} a vector of all random

parameters. We use Markov Chain Monte Carlo (MCMC) to sample θ from their posterior

distribution. To facilitate the posterior computation, we introduce a latent normal vector

ηi
iid∼ NK(0, IK). We then have Y ⋆

ij | µij(xi),λj(xi),ηi, σ
2 indep∼ log-N(µij(xi) +λ

′
j(xi)ηi, σ

2)

as independent log-normal variables, which results in significant computational efficiency.

The joint posterior distribution of the augmented model is

p(θ,Y ⋆,η | y,x) ∝
N∏
i=1

J∏
j=1

p(yij ≤ Y ⋆
ij < yij + 1 | ηi,θ)

N∏
i=1

p(ηi | θ)p(θ). (12)

We use the blocked Gibbs sampling algorithm (Ishwaran and James, 2001) by considering

a finite-dimensional truncation of the stick-breaking processes in (9) and (11). We set the

truncation levels Lr and Lα to sufficiently large values. Given the latent variables, all

parameters except ϕk can be updated through Gibbs steps. Although fkp has a conjugate

full conditional distribution, we found the mixing over fkp could be poor, and used an

adaptive MH algorithm (Haario et al., 2001) for an efficient update of ϕk and fkp. Details

of the MCMC algorithm are in Supp. § 1. The codes can be found at https://github.com/

shuang-jie/BCAIA.

4 Simulation Studies

4.1 Simulation 1

For Simulation 1, we considered a setting similar to the mice gut microbiome dataset in

§ 5. In real data, we have two categorical variables, one with two levels and the other with

three levels, resulting in a total of six experimental conditions. Using indicator variables

with main effects, we constructed x with P = 4. We assumed J = 15 OTUs and generated
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five samples per condition, resulting in a total of N = 30 samples. To specify Σtr(x), we

set Ktr = 2. With probability 0.5, we set qtrjk = 0. For the remaining probability, we

simulated a random variable from N(0, 1), shifted it away from zero by 1, and set it to

qtrjk. We also assume that latent factors contribute differently to each categorical level, and

set f tr
kp

iid∼ Unif(−1, 1) and set f11 = −f13, f21 = −f22, which results in factor 1 having

no contribution to level (1, 0, 1, 0) and factor 2 having no contribution to level (1, 1, 0, 0).

Then, Σtr(x) = Λtr(x)Λtr,′(x) + σtr,2IJ with λtrjk(x) = qtrjkf
tr,′
k x and σtr,2 = 0.52. The true

covariance matrix Σtr(xi) is illustrated in the upper triangles of the heatmaps in Fig 1(b)-

(c) for two samples with x = (1, 1, 0, 0) and x = (1, 1, 0, 1). For the mean count abundance,

we set rtri
iid∼ Unif(0, 2), i = 1, . . . , N and αtr

j
iid∼ 0.3N(2.5, 0.52) + 0.7N(5, 0.52), j = 1, . . . , J .

And we generated βtr
jp, similar to qtrjk; we first let βtr

jp 0 with probability 0.5. With the

remaining probability, we sampled a random variable from N(0, 1), shifted away from 0 by

1, and set it to be βtr
jp. Finally, we generated Y ⋆,tr

i from log-NJ(µ
tr(xi),Σ

tr(xi)), where

µtr
ij = rtri + αtr

j + βtr
j x̃i, and obtained count vectors Yi = ⌊Y ⋆,tr

i ⌋.

We specified the values of the fixed hyperparameters as discussed in § 3, K = 8,

cr = cα = 3, Lr = 30, Lα = 35, aσ = bσ = 3, arω = brω = aαω = bαω = 5 to fit the

model for the simulated dataset. We ran MCMC for 160,000 iterations and discarded the

first half for burn-in. The computation took 13 minutes on an Apple M1 chip laptop.

Fig. 1(a) presents a histogram of the differences Σ̂jj′(xi) − Σtr
jj′(xi) from all samples,

j ≤ j′. The differences are tightly centered around 0, indicating that the model provides

good estimates of the covariance that varies with x. Figs. 1(b) and (c) compare posterior

median estimates of Σjj′(x) to their true values Σtr
jj′(x) for two randomly selected samples,

i = 16 and 26, which have x16 = (1, 1, 0, 0)′ and x26 = (1, 1, 0, 1), respectively. For

sample 16, all OTU pairs have a small covariance in the truth, representing inactive OTU

communities. While in sample 26, some OTU pairs exhibit strong covariance. Our method

produces reasonable estimates for both levels.
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(a) Σ̂jj′(x)− Σtr
jj′(x) (b) Σ̂(x16) vs Σ

tr(x16) (c) Σ̂(x26) vs Σ
tr(x26)

Figure 1: [Simulation 1] Panel (a) has a histogram of differences between Σ̂jj′(xi) and

Σtr
jj′(xi) under six levels, j ≤ j′. Panels (b) and (c) compare Σ̂tr(x) (lower triangular) to

its posterior median estimates Σ̂(x) (upper triangular) for two arbitrarily selected samples,
i = 16 and 26, having x16 = (1, 1, 0, 0)′ and x26 = (1, 1, 0, 1).

Fig. 2(a) compares the posterior median estimates of µij to their true values, with red

dots and grey vertical lines representing the posterior median estimates and 95% credible

interval estimates, respectively. The means of y⋆ij are well estimated overall. Figs. 2(b)-(d)

illustrate the posterior median estimates of covariate effects on the mean abundance. The

difference βtr
j1 − βtr

j2 quantifies the effect of the binary covariate. The parameters, βtr
j3 − βtr

j4,

βtr
j3 − βtr

j5, and β
tr
j4 − βtr

j5 quantify the differences in µij between pairs of the three levels of

the ternary covariate. Supp Fig 3 shows the estimates of σ2, qjk and τk. The traceplot

shows the convergence and good mixing of the MCMC chain. From these figures, our model

obtained reasonable estimates of the covariate effects on the abundances.

Most recently, Ahn and Datta (2024) introduce a jackknife pseudo-value method to

adjust microbiome network connectivity differential analysis for clinical covariates, enabling

comparisons of microbial interactions between groups.

4.2 Simulation 2

Simulation 2 considers a dataset with repeated samples that typically has large inter-subject

variability. Suppose we have multiple samples from each in a set of subjects, {1, . . . , S}. We

let si ∈ {1, . . . , S} denote the subject from which sample i is taken. To accommodate inter-
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(a) µ̂ij vs µ
tr
ij (b) ̂βj1 − βj2 vs βtr

j1 − βtr
j2

(c) ̂βj4 − βj3 vs βtr
j4 − βtr

j3 (d) ̂βj5 − βj3 vs βtr
j5 − βtr

j3

Figure 2: [Simulation 1] The posterior median estimate of mean abundance µij is plotted
against the truth in panels (a). Panels (b)-(d ) plot posterior point estimates of βj1 − βj2,
βj3−βj4, βj3−βj5, and βj4−βj5 against their true values. The red dots represent posterior
median estimates, and the grey vertical lines 95% posterior credible interval estimates.

subject variability, we extend the model in a fashion similar to that in Zhang et al. (2025);

we let the normalized mean abundance indexed by subjects, that is, αsi,j and assumed the

following model for αsi = (αsi1, . . . , αsiJ)
′;

αsi | G
iid∼G(α), si ∈ {1, . . . , S},

G(α) =
J∏

j=1

Gj(αj) =
J∏

j=1

[
∞∑
l=1

ψα
l

{
ωα
l δξαjl + (1− ωα

l )δ
(

να
j
−ωα

l
ξα
jl

1−ωα
l

)
}]

.
(13)
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That is, a common αj is shared by the samples from a subject, and the prior distribution

of αs has different mixing locations ξαjl for each OTU.

To generate a dataset, we let S = 25 subjects and J = 100 OTUs. We included a

continuous covariate xcsi
iid∼ N(0, 1) and a binary covariate, xdi ∈ {0, 1}, that represents

two experimental conditions. Assuming that a sample is obtained from each condition

for a subject, we had N = 50 samples. Adapting the common factor model in De Vito

et al. (2019, 2021), we let Σtr(x) = Λtr
0 Λ

tr,′
0 + Λtr(x)Λtr,′(x) + σ2,trIJ , where Λtr

0 is J ×K0

matrix of common factor loadings with K0 = 2, and Λtr
0 Λ

tr,′
0 is a baseline covariance. We

simulated random variables from N(0, 1) and shifted them away from zero by 1/2 for λtr0,jk

of OTUs 1-25 and 51-100 to ensure that those OTUs have baseline interactions. We let

λtr0,jk = 0 for the remaining OTUs. We next let Λtr(x) a J ×K1 factor loading matrix with

K1 = 3 and let λtr1,jk(x) = qtrjkf
tr,′
k x. We then simulated random variables from N(0, 1),

shifted them away from zero by 1/2, and set them to be f tr
jk for OTUs 51-100 and f tr

jk = 0

for the remaining OTUs. And we have f tr
kp

iid∼ Unif(−1, 1) and σ2,tr = 0.52. Under this

design, interactions among OTUs 1-50 do not change with covariates, while among OTUs

51-100 change with the covariates. Furthermore, OTUs 26-50 do not interact with the

other OTUs. The covariance matrix corresponding to Σtr(xi) is illustrated in the lower

triangle of Fig 3(b) and (c) for two selected samples. Excess zeros and large inter-subject

variability are commonly observed in microbiome data, and we reflect those in the simulated

dataset. For the normalized abundance level, we first set ξα,trj1 = −5, ξα,trj2 ∼ N(2.5, 0.5)

and ξα,trj3 ∼ N(5, 0.5) and simulated ψtr
j = (ψtr

j1, ψ
tr
j2, ψ

tr
j3) ∼ Dir(30, 40, 30). The three

values, ξα,trjl , l = 1, 2 and 3, represent zero, small and large counts, respectively. We

then let αtr
sj = ξα,trjl with probability ψtr

jl for s ∈ {1, . . . , S}. We next simulated size factors

rtri
iid∼ Unif(0, 2) and regression coefficients βtr

jp
iid∼ N(0, 1). We let µtr(xi) = rtri 1J+α

tr
si
+β′xi.

Under this setup, approximately 30.76% of Yij’s are 0. We specified the hyper-parameters

values similar to Simulation 1 with K = 7. We ran MCMC for 160, 000 iterations and
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discarded the first half for burn-in. It took 23 hours on an Apple M1 chip laptop.

Fig 3(a) plots the differences Σ̂jj′(xi) − Σtr
jj′(xi) of all samples, j ≤ j′. S, j ≤ j′?? It

shows that the extended model captures covariate varying feature interactions reasonably

well even when excess zeros are present and counts greatly vary across subjects. Fig 3(b)

and (c) compare the posterior median estimates of Σ(x) to its truth. Their x’s have the

same value of the continuous covariate, xc = −1.23, but the discrete covariate xd takes

the value of 0 and 1, respectively. Fig 4 presents the posterior estimates of covariance for

some selected pairs of OTUs by varying the values of xc and xd. The solid and dashed lines

are the truth and posterior estimates, and the red and blue colors correspond to xd = 0

and 1, respectively. The shaded area represents point-wise 95% posterior credible interval

estimates. The crosses at the bottom of the plots are the observed values of xc. Fig 3

and Fig 4 show that our model identifies truly inactive OTUs and estimates the baseline

covariance successfully, and the OTU interrelationship structure varying with the covariates

is also reasonably well captured even when the sample size is smaller than the number of

OTUs.

Supp. Fig 2 compares posterior median estimates of sample size factor ri and the mean

abundance µij to their truth. In the figure, the library size factor and mean abundances are

well estimated, serving as a reliable foundation for estimating the parameters of primary

interest, such as Σ(xi).

4.3 Simulation 3

For Simulation 3, we let the covariance matrix arbitrarily vary with a binary covariate,

xd ∈ {0, 1} that represents two experimental conditions. Specifically, arbitrary covariance

matrices were generated using the vine method in Lewandowski et al. (2009), separately

for each value of xd, as follows; We simulated partial correlations from linearly transformed

Be(1, 1) distribution over the interval of (−1, 1). To encourage sparsity in Σtr(x), we
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(a) Σ̂jj′(x)− Σtr
jj′(x) (b) Σ̂(x2) vs Σ

tr(x2) (c) Σ̂(x27) vs Σ
tr(x27)

Figure 3: [Simulation 2] Panel (a) has a histogram of differences between Σ̂jj′(xi) and
Σtr

jj′(xi) of all samples. In (b), the lower left and upper right triangles of the heatmap

illustrate true values Σtr
jj′ and their posterior estimates of correlations Σ̂jj′ , respectively.

Two samples, samples 2 and 27, from subject 2, are arbitrarily chosen for illustration.
Their covariates are x2 = (1,−1.23),x27 = (0,−1.23).

(a) OTUs 52 & 53 (b) OTUs 67 & 86 (c) OTUs 74 & 90

Figure 4: [Simulation 2] Scatter plots of Σjj′(x) (dashed line) and Σtr
jj′(x) (solid line) are

plotted for three arbitrarily chosen OTU pairs, OTUs 52 and 53 in panel (a), OTUs 67
and 86 in panel (b), and OTUs 74 and 90 in panel (c). Crosses are observed values of the
continuous covariate xc. The red and blue colors are for xd = 0 and 1, respectively. The
shades represent pointwise 95% posterior credible interval estimates.

set the partial correlations below 0.8 to 0 and generated a correlation matrix, ρtr(xd)

using their recursive formula. We then sampled independently from Unif(1, 1.5) and let

Σtr
jj′(x

d) = σ2,tr
j (xd)σ2,tr

j′ (xd)ρtrjj′(x
d). Σtr(0) and Σtr(1) are shown in the lower triangle of

Fig 6(b) and (c), respectively. We kept the rest of the simulation setup the same as in

Simulation 1. We also used the same fixed hyperparameter values as in Simulation 2

except K = 25. We examined the prior sensitivity analysis by varying the value of K. The

covariate-varying covariance matrix estimates remain largely unchanged for large enough
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(a) ̂βj1 − βj2 versus βtr
j1 − βtr

j2 (b) β̂j3 versus βtr
j3

Figure 5: [Simulation 2] The posterior estimates of the effects of the binary and continuous
covariates on abundance are plotted in panels (a) and (b), respectively. The dots represent
the posterior median estimates, while the vertical lines indicate their corresponding 95%
credible interval estimates.

values of K. More detailed results are summarized in Supp.3. We used MCMC to draw

posterior samples of the random parameters. Examination of the MCMC simulation using

traceplots indicated no evidence of convergence or mixing problems.

Fig 6(a) has a histogram of the differences Σ̂jj′(xd) − Σjj′(x
d), j ≤ j′ for xd ∈ {0, 1}.

Fig 6(b) and (c) compares the posterior estimates Σ̂(0) and Σ̂(1) under our model to their

truth. Arbitrary Σtr(xd) are generated for each condition, while our model has a covariance

regression with low rank assumption. However, the model approximates the truth structure

in Σtr(xd) reasonably well.

Fig 7(a) shows a posterior median estimate of mean abundance µij with their 95%

interval estimate. Panel (b) of the figure compares the posterior estimates of the covariate

effect βj1 − βj2 on the mean abundance to the truth. The dots dots are point estimates,

and the vertical lines 95% credible interval estimates. Our model effectively captures the

covariate effects on the mean abundance.
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(a) Σ̂jj′ − Σtr
jj′ (b) Σ̂0 vs Σtr

0 (c) Σ̂1 vs Σtr
1

Figure 6: [Simulation 3] Panel (a) presents a histogram of the differences between Σ̂jj′(xd)

and Σtr
jj′(xd), for j ≤ j′ and xd ∈ {0, 1}, where Σ̂jj′(xd) are the posterior median estimates

of Σjj′(xd). Panels (b) and (c) compare Σ̂(xd) to their true values for each xd.

(a) µ̂ij vs µ
tr
ij (b) ̂βj1 − βj2 vs βtr

j1 − βtr
j2

Figure 7: [Simulation 3] Panels (a) and (b) compare the posterior estimates of µij and
βj1−βj2 to their true values. The dots represent the posterior median estimates, while the
vertical lines indicate the 95% credible interval estimates.

5 Mice Gut Microbiome Data Analysis

We applied our method to a subset of the mice gut microbiome data from Patnode et al.

(2019). The experiment aimed to understand how individual species in a human gut mi-

crobial community interact with others and respond to dietary changes. Specifically, it

examined the effects of a human diet representing the upper tertile of saturated fat and

lower tertile of fruit and vegetable consumption (HiSF-LoFV) supplemented with differ-
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ent fibers. The abundance of beneficial gut microbes may change differently with fiber

supplements, and their competition with other microbes may be influenced by the type of

supplement. Furthermore, the gut microbiome’s membership was manipulated to assess

how these changes affect microbial community dynamics. In particular, gnotobiotic mice

colonized with a 15-member consortium of human-gut-derived bacterial strains were fed

the HiSF-LoFV diet supplemented with various food-grade fibers. Each mouse received a

different fiber-supplemented diet for a total of 4 weeks. The microbial composition of their

fecal samples was measured over time using 16S rRNA gene sequencing. For our analysis,

we focused on the microbial composition at day 12 post-colonization, comparing three di-

ets: two different fiber supplements, 10% citrus pectin (CPT) and 10% pea pectin (PEF),

and HiSF-LoFV as a control. This resulted in N = 69 samples, with mice assigned to the

three diets: HiSF-LoFV, CPT, and PEF, respectively. In addition, one specific speices,

Bacteroides cellulosilyticus (B. cellulosilyticus), was removed from half of the mice at the

time of colonization. A list of the 15 strains in the defined bacterial consortium can be

found in Supp. Tab. 1, and the number of samples for each of the six experimental condi-

tions defined by diet and the presence/absence of B. cellulosilyticus is provided in Supp.

Tab. 5.

The lower triangle of the heatmaps in Fig 8 (a)-(f) shows empirical correlation estimates,

ρemjj′ (x), computed using log(yij + 0.01) after normalization by the log of the total count

sample size factor estimates for each of the six conditions. To fit our model, we first

constructed covariate vectors for µ and Σ, assuming that diet types influence inter-species

competition and abundances, while the removal of B. cellulosilyticus has indirect effects

on the other species through the microbe-microbe interaction mechanisms (excluding the

abundance of B. cellulosilyticus itself). The fixed hyperparameters were set similarly to

those in Simulation 1, with K = 8. The MCMC simulation ran for 160,000 iterations,

discarding the first half as burn-in and using the second half for inference. The computation
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(a) removal of WH2 + CPT (b) removal of WH2 + HiSF (c) removal of WH2 + PEF

(d) CPT (e) HiSF (f) PEF

Figure 8: [Mice Data] The lower left and upper right triangles of the heatmap illustrate
empirical correlation estimates ρemjj′(x) and their posterior estimates ρ̂jj′(x) under the
six different experimental conditions, respectively.

took 22 minutes on an M1 Mac.

Fig 8(a)-(f) illustrates posterior mean estimates of correlation ρ̂jj′(x) of the OTUs

under the six different conditions for easier interpretation. Overall ρ̂jj′(x)’s tend smaller

than their corresponding empirical estimate. The interaction mechanism vary noticeably

by the removal of B. cellulosilyticus, but its change by the diet is minimal. Fig 9 illustrates

posterior inference on ρjj′(x) for some pairs of species, where the dots and vertical lines

represent the posterior median estimates and 95% credible interval estimates, respectively.

From panel (a), the 95% posterior credible interval estimate of ρjj′(x) of OTUs 9 and 13,

corresponding to species Collinsella aerofaciens and Ruminococcaceae, remains below zero

under all conditions, indicating that the species’ abundances are negatively associated.

Panels (b) and (c) show the interval estimates for two pairs, OTUs 1 and 3 and OTUs

3 and 11, where OTUs 1, 3 and 11 correspond to species B. ovatus, B. thetaiotaomicron

and Odoribacter splanchnicus. Their interactions are significantly positive in the absence
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(a) OTUs 9 and 13 (b) OTUs 1 and 3 (c) OTUs 3 and 11

Figure 9: [Mice Data] Posterior inference on correlations ρjj′(x) under the six experimental
conditions is illustrated for three pairs. The dots denote posterior median estimates, and
the vertical lines 95% credible interval estimates.

of B. cellulosilyticus, regardless of the diet but they have no significant interaction in the

presence for all diet.

Fig 10 illustrates posterior inferences on the differential microbial abundances across

diets. The dots and vertical lines represent posterior median estimates and 95% credible

intervals, with intervals not containing zero highlighted in red. From panel (a), the diet

supplemented with pea pectin is associated with statistically significant changes in abun-

dance for five strains compared to the diet supplemented with citrus pectin. The effect

estimates are positive for OTUs 1 and 4, and negative for OTUs 6, 7, and 13. OTUs 4, 6,

and 7 correspond to B. thetaiotaomicron, and B. finegoldii, respectively. This implies that

B. ovatus and B. thetaiotaomicron are more abundant with the pea pectin diet, while B.

finegoldii, and Ruminococcaceae are less abundant. Panels (b) and (c) compare the control

diet to the citrus pectin and pea pectin diets, respectively. From the figure, the abundance

of B. thetaiotaomicron and B. finegoldii changes across all diet types. The shift from the

control to the citrus pectin diet is associated with the most significant changes in microbial

abundance.
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(a) βPET − βCPT (b) βHiSF − βCPT (c) βPET − βHiSF

Figure 10: [Mice Data] Posterior estimates of diet effects on mean abundances are illus-
trated. Posterior mean estimates are denoted by dots, and 95% credible estimates with
vertical lines. The intervals that do not contain zero are marked in red.

6 Conclusion

In this paper, we developed a Bayesian joint model of mean and covariance varying with

covariates for high-dimensional multivariate count data. This method utilizes a covariate-

dependent factor model for the covariance matrix and models the mean abundance using

a flexible DP mixture. The model enables the assessment of covariate effects on mean and

covariance in tandem. We place a Dir-Horseshoe prior on the covariate-dependent loading

matrix to induce sparse feature interactions. The flexible mean mixture kernels handle the

excess zeros and over-dispersion problems in the count data. The model is demonstrated

through simulations and a real data example with categorical covariates.

Our methods can be further extended by relaxing the linear covariance regression to a

more complicated regression formula, such as introducing the transformation of covariates

√
x and x

3
2 . Introducing different orders of covariates induces a higher order of covariance-

covariate relationship. It is important to note that while this extension offers greater

flexibility, the same higher order of covariates entering the mean regression would need

more exploration (variables selection). With added parameters, more samples are needed

to obtain reasonable inferences. A further research field is to study covariate-assisted in-

teractions among temporal and/or longitudinal multivariate count data. In spatial and

temporal heteroscedasticity, it’s natural to consider the conditional dependence through
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time or locations. Fieuws and Verbeke (2006) discussed a pairwise approach jointly mod-

eling of multivariate longitudinal data using mixed models, providing a foundation for

understanding covariance structures in such contexts. Adapting the factor loading matrix

to a time or location-dependent one has the potential to enhance the inference of interaction

structures in other domains.
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