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Abstract

In many real-world scenarios, variables show a distinct bunching pattern just
above a known threshold. Detecting and quantifying the extent of such bunching
behavior is achieved using density smoothing methods. However, a researcher may
also want to correlate the magnitude of bunching with pertinent covariates. To this
end, we introduce a Bayesian approach that models the density function using a
smooth polynomial basis expansion, supplemented with a half-kernel to introduce a
discontinuity at the specified threshold. Our model allows the covariates to impact
the size of the jump at the threshold. We employ a data-augmented Gibbs sampler
for posterior inference, that can also be used for large datasets. We also introduce
a model selection criterion to formally compare and select between different versions
of the model one could fit to the data. The efficacy of our model is demonstrated
through simulated data and its application to a corporate proposal voting dataset
with a known pass/fail threshold.
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1 Introduction

Many institutional policies attach a dichotomous outcome to a continuous endogenous
variable. In response, agents may manipulate choices to stay on the preferred side of
a threshold value, causing the empirical distribution of the variable to manifest a jump
discontinuity at the cutoff. The existence of such density discontinuity has been noted for
taxable earning (where the marginal tax rate increases on crossing certain thresholds of
taxable income), firm size (where certain regulations apply only for firms that are larger
than a certain value), student grade (where scoring below the passing threshold implies
failing the course), etc.; see Jales and Yu (2017) and the references therein. Detecting and
measuring a density discontinuity offer useful insight into agents’ incentives and sensitivity
to a policy variable that changes discontinuously around the threshold. Many statistical
methods to measure the size of the discontinuity have been proposed for this task (e.g.,
McCrary, 2008; Otsu et al., 2013; Cattaneo et al., 2020). However, these methods do
not address the natural follow-on question of relating density discontinuity to measured
covariates, i.e., is the density discontinuity larger for certain types of agents (e.g., what
kind of people report a taxable income that avoided crossing a tax threshold?). Our paper
presents a method to answer such questions.

Our motivating application is a study of corporate proposal voting (Section 4). For
certain significant corporate decisions, the management of the company is required to
put up a proposal that is voted on by the shareholders and “passes” before it can be
implemented. If the fraction of “yes” votes is more than a predefined threshold (typically
50%) then the proposal passes, otherwise it fails. The management would prefer that their
proposal not fail, and they have various tools at their disposal to try and achieve this.
The histogram of the fraction votes supporting a proposal (n = 20,000) clearly shows
density discontinuity at the cutoff — there are many more proposals that pass narrowly
than those that fail narrowly — and the discontinuity is statistically significant (Figure 1).
These conclusions do not hold with equal force when the data is segmented along measured
attributes. The statistical evidence of a jump is more ambiguous for proposals with a
positive recommendation from the Institutional Shareholder Services (a voting advisory
entity that recommends how shareholders should vote on each proposal) than those with
a negative recommendation, even though the former group is about 6 times larger in size.
The jump size itself seems to diminish if a higher number of financial analysts cover the
firm. A discontinuity is barely detectable except in samples with the lowest 33% of analyst
coverage. A similar pattern can be noticed for firm size but not for the firm’s Q ratio (the
ratio of the market value and the book value of the firm — a measure of future growth
opportunities of the firm that is often found to be correlated with outcomes examined in
corporate governance studies). In other words, the existence of a density discontinuity and
its magnitude both appear to be associated with some covariates but not others.

While segmentation analyses are useful in understanding how agents’ response to policy
is influenced by covariates, the qualitative nature of these analyses is unsatisfactory for sev-
eral reasons. Lacking a framework to relate results from different segments to one another,
such analyses fail to establish a clear pattern of association between density discontinu-
ity and the variable, especially when the variable is continuous or ordinal. For example,
results presented in Figure 1 cannot be used to quantify if greater analyst coverage is asso-
ciated with lower agent manipulation, or whether QQ ratio has no association whatsoever.
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Figure 1: Density discontinuity testing for corporate proposal voting. Estimates and discon-
tinuity tests were done using rddensity R-package by Cattaneo, with cubic local polynomial
fit used for density estimation. For all continuous covariates, data was segmented into
equal thirds according the sorted values of the covariate in concern.

Moreover, absent a joint analysis of association, it is impossible to answer whether density
discontinuity exhibits association with a particular covariate of interest, say, analyst cover-
age, when adjusted for all remaining variables, including firm size. Although this problem
could be partially alleviated by jointly segmenting over two or more covariates, such an



extension is difficult to put into practice. A joint segmentation analysis exacerbates the
interpretability challenges mentioned above. It may also lead to statistical inefficiency and
issues of multiple testing by partitioning data into many segments; one or more segments
may end up with very little data to reliably analyze density discontinuity.

Arguably, these shortcomings could be overcome by using regression tools to jointly ana-
lyze the association between covariates and (conditional) density discontinuity. To the best
of our knowledge, no such statistical tool currently exists in the literature. Density estima-
tion, with or without discontinuity, is mostly taken to be a data smoothing exercise whose
statistical validity rests on large sample estimation theory (Silverman, 2018; Cattaneo et al.,
2020). Although seemingly model-free, many such smoothing techniques closely relate to
(regularized) likelihood-based estimators in suitably defined high- or infinite-dimensional
model settings involving mixture decompositions or basis expansions (Kiefer and Wol-
fowitz, 1956; Good and Gaskins, 1971; Leonard, 1978; Silverman, 1982; Ferguson, 1983),
with equally compelling asymptotic guarantees (van der Vaart and van Zanten, 2009; Shen
et al., 2013; Chen, 2017). Such model-based reformulations and the associated likelihood-
based estimation are particularly useful in settings where the estimation of the density
function is one piece within a larger estimation task, as is the case with the density dis-
continuity regression problem pursued here. Indeed, our primary goal is to estimate a
parametric relation between covariates and the density discontinuity, treating the rest of
the density function as a nuisance parameter. In general, likelihood-based methods, espe-
cially the integrated likelihood approach of Bayesian methods are well-suited for handling
high-dimensional nuisance parameters (Kalbfleisch and Sprott, 1973; Berger et al., 1999).

We pursue such a likelihood-based inference method within a generalized linear model
setting. The jump size is modeled as a linear function of the covariates so that the coeffi-
cients determining this linear function can be interpreted as each measuring the association
of the corresponding attribute, adjusted for other variables in the model. Our formulation
builds upon the mostly Bayesian literature on density regression, where one attempts to es-
timate the conditional density functions of a response given predictors (Dunson et al., 2007;
Tokdar et al., 2010). Density discontinuity is incorporated into this framework as a discon-
tinuous biasing function with a parametric form involving the linear function of covariates
mentioned above (Section 2.1). The biasing function modifies an otherwise smooth condi-
tional density function which also needs to be estimated from data. A Bayesian formulation
proves particularly helpful in parameter estimation to sidestep some intractable integrals
associated with the likelihood function that arise from the biasing operation (Section 2.2).
The resulting estimation method is complemented by a model selection technique based on
an information criterion due to Watanabe (2013), and its practical utility is discussed in
Section 2.3.

Understanding the behavior of agents in response to policies is not merely an academic
pursuit; it has profound implications for economics, corporate governance, and regulatory
effectiveness. For instance, when taxpayers manipulate earnings to avoid higher tax brack-
ets, it can lead to significant revenue losses for governments and distort economic indicators.
Similarly, if companies maneuver to receive favorable votes on proposals, it could reflect
issues in shareholder democracy and corporate transparency. The methodology in this pa-
per for detecting and interpreting heterogeneity in density discontinuities would help get
a more nuanced understanding of how different agents alter their behavior differently in
response to policies, thereby informing more effective policy designs.



2 Method

2.1 Modeling conditional density with discontinuity

Let Y denote the endogenous variable of interest. Without loss of generality, Y € (—1,1)
and the cutoff point is zero. Given a vector of covariates x = (z1,...,,), the conditional
density of Y could be expressed as p(y|x) x g(y)®(r(x,y)), where g(y) is a baseline density,
r(x,y) is a biasing function influenced by the covariates and filtered through a nonlinear
transformation ®(-). Borrowing terminology from generalized linear models, one may call
®~! a link function. To embed a parametric form of jump discontinuity, we further decom-
pose the biasing function as r(x,y) = r.(x,y) + (x'a);+j(y), where r.(x,y) is continuous
in y, and j(y) has a jump discontinuity of unit length at y = 0 but is otherwise contin-
uous. Consequently, 7(x,y) inherits a jump discontinuity at the cutoff with jump length
(x'a)4 := max(x'ex, 0), which depends on the covariates through a linear combination de-
termined by the coefficients & = (ay,...,q,)". Estimating a from data is the primary
goal.

Density regression models of this type, without discontinuity, have been explored earlier
(Tokdar et al., 2010; Li et al., 2022), focusing mainly on nonparametric Bayesian estimation
of r.(x,y) under prior distributions that allow great flexibility of shape and smoothness.
Here, to keep the focus on estimation of a;, we consider a simpler formulation r.(x,y) =
Zle(x’ﬁk)Pk(y), determined by unknown coefficient vectors By = (Br1, .-, Brp) |, 1 < k <
K, where Pi(y),- -, Pk(y) are normalized Legendre polynomial basis of maximum degree
K, which we call the order of the model. The Legendre polynomials satisfy f Pi(y)dy = 0,

f P2(y)dy = 1, and f Pi(y)P,(y)dy = 0 if k # . The first few polynomials are
Pi(y) = ay, Pa(y) = as(3y” — 1), Py(y) = as(5y° — 3y), Puly) = aa(35y" — 30y* + 3),

with a; = \/3_/2, ay = \/5/_8, as = \/7_/8, and ay = 1/9/128. Taking K = oo produces
an orthonormal basis of the Ly space on (—1,1), but we restrict to a finite K. Section 2.2
introduces a data-driven choice of K.

One could consider various shapes for the jump function j(y) to capture different types
of agent manipulation. For illustrative purposes, we shall focus on a parametric half-kernel
i) = ix(y) = —exp{—£:} - Ly < 0), with ji\(y) = 0 for y > 0, and jr(y) < 0 and
monotonically decreasing for y < 0 with j,(0) = —1 and lim,,_ jA(y) = 0. Such a jump
function could be justified for corporate proposal voting if it is believed that management
has some ability to detect, and withhold from voting, proposals that lack majority support
by a small margin; the propensity of withholding decaying as the margin grows. The rate
of this decay is controlled by the persistence parameter A > 0. See Section 5 for further
comments on j(y).

We complete the model formulation by taking g(y) = g~ (y) oc (F2)"~1(152) 271, with
~ = (71,72) to be estimated from data. A parametric form of the baseline density adds
extra shape flexibility, especially at the boundaries of the support (—1,1). Notice that
Y ~ g4(y) if and only if % ~ Be(71, 72).

Let 8 = (a, B, \,~) denote all parameters of the model. Given observations {(x;,y;) :
i=1,...,n}, the likelihood function is L(0) = [[\_, pe(vi|x;), where

() ( i (X'Br) Pily) + (X)) '
f L 9+ Zk L (X'Br) Pi(t) + (X'e) i (t))dt

5
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The denominator in (1) cannot be evaluated in closed form, making the likelihood func-
tion intractable and unfit for maximum likelihood estimation. For Bayesian computation,
an intractable likelihood function usually leads to a doubly intractable posterior distri-
bution that is difficult to compute or even approximate with Markov chain Monte Carlo
(Murray et al., 2006; Caimo and Mira, 2015). Fortunately, for the present model, dou-
ble intractability could be resolved with a clever data augmentation strategy when & is
a bounded transformation (Adams et al., 2009; Rao et al., 2016). In the following, we
consider ®(r) = (1 + e™")~", which is associated with the logit link ®~'(u) = log %,
which offers additional computational advantages when the coefficients a, 3, ..., B3k are
assigned Gaussian prior distribution (Polson et al., 2013).

Arguably, from the point of view of interpretability, a more compelling choice would be
®(r) = ", for which log?Z (gﬂg = (x'a);. This “log link” directly relates the coefficient
vector a to the logarithm of the ratio of the density values just above and below the cutoff,
which is often taken as a key measure of the discontinuity size (Cattaneo et al., 2020). How-
ever, the fact that the exponential function is unbounded makes the double intractability
problem mentioned above quite challenging (Tokdar et al., 2010). The logit link formula-
tion adopted here lacks a similarly direct quantitative interpretation of a. Qualitatively
speaking, log go } ; is monotonically increasing in zjc;, when all other covariates are held
fixed. So the sign of each «; can be interpreted as a measure of positive versus negative
association of the j-th covariate with the jump size. Toward a more quantitative interpre-
tation, one could consider the shifted logistic link ®(r) = (1+e* ")~} for a fixed constant
shift a. For this choice,

1+€rc(x,0)—(x/a)+—a
1+e'r'c(x,0)7a,

log zggjii = (X'a)y + log — (X'a)y

as a — 0o. Therefore the shifted logit link, with a large enough shift, mimics the model for-
mulation and interpretation one would have with the log link. The computational method
we introduce below works with any shift amount. But there is a price to pay in terms of
increased computing time for larger values of a.

2.2 Parameter estimation

The data augmentation strategy of Adams et al. (2009), later refined by Rao et al. (2016)
and Li et al. (2022), is based upon the concept of rejection sampling. Given a transformation
P : (—o0,00) — (0, 1), one can simulate random numbers from a density p(y) o g(y)®(r(y))
as follows:

Step 1. Draw a random number y from the density g(y)

Step 2. Draw a random number u from the unit interval

Step 3. Terminate and return y if u < ®(r(y)); otherwise, go back to Step 1.
In the context of our model, each observation y; could be seen as the random number
returned by this rejection sampling algorithm, applied with r(y) = r(x;,y). If we had
access to the rejected intermediate draws ¢;;, j = 1,...,J;, a complete data likelihood
could be written as

n Ji

L(6;3) = p(y, 710) = [ [ |9+ ()@ (r(xi,90)) x [ [ 9 (@:){1 = @(r(xi, 55} | - (2)

i=1 Jj=1



where 7(X,y) = 1gax(X,y) = Zle(x’ﬁk)Pk(y) + (x'a)4jx(y). The complete data likeli-
hood does not involve any intractable integrals and can be easily computed.

Of course, the rejection history y is not available to us but — treating it as missing data
— we could attempt to approximate the joint posterior distribution p(, y|y) o< L(0,y)m(8)
by Markov chain Monte Carlo, under a suitable prior density 7(8). In this work, we use
independent prior specifications on the individual scalar elements of 8: 7, ~ Ga(a,,b,),
Brj ~ N(0,h%), a; ~ N(0,h2), 55 ~ Be(ax,by). This is a fairly generic specification
with the exception that (jointly) normal priors on (51, ..., Bk;), with independence across
7 =1,...,p, are convenient due to their partial conjugacy properties as discussed below.

A customized Gibbs sampling algorithm seems appealing to make draws of (0,y) from
their joint posterior distribution. The algorithm can be initialized at an arbitrary (). At
iteration ¢t = 1,2,..., one generates y* from the conditional posterior p(y|@ = 8¢~ y)
by running the rejection sampling algorithm once for each data unit ¢ and storing the
intermediate rejected draws ¢;;, and discarding the final accepted point; see Rao et al.
(2016) for a theoretical validation. Once y® is imputed, the complete data likelihood is
used to simulate 8% in accordance to the conditional posterior

) )

POy =3 y) =p(vly =3, y) x p(B, . ANy =5, y).

The first factor in this product is the ordinary posterior density of v under a beta observa-
tion model with data (y;; : 1 < j < J; + 1;1 <i < n), where y; = gjg-), 1 < j < J; are the
imputed points and y7; ,; = y; are the observed data points. One could use any number
of Metropolis type algorithms to draw v from this posterior. We adopt an independence
Metropolis sampler which uses an easily computed normal approximation as the proposal
distribution; see Appendix A for more details.

The second factor equals the posterior density of (3, a, \) under a binary regression
model: zf; ~ Bern(®(r(x;,;;))), with observed binary response values z; = I(j = Ji;1)
marking whether 7 is observed (27; = 1) or imputed (z;; = 0). At this point, exploiting
the fact that ®~! is the logistic link, one can introduce Pélya-Gamma latent variables
wij ~ PG(1,7(yj;,%x;)) and reinterpret the conditional posterior of (3, c, A) as one arising
from the Gaussian regression model

K
Uiy = Z(Xiﬁk)Pk(yz*J) + (X;a)+j>\(y¢*j) + €ij, €5 ~ N(()?wi;l)a (3)

k=1
with observed response values uy; = (27; — 0.5)/w;;; see Polson et al. (2013) for more

details. Next, one cycles through j = 1,...,p, and draws (ﬁﬁ), . ,5%) from their joint
conditional posteriors which are Gaussian due to conjugacy. A similar conjugate update
does not work for a because we restrict the jump size to be non-negative. Instead, a®
can be drawn (from the likelihood under (3)) by an adaptive Metropolis algorithm which
can automatically tune the step size of the underlying random walk to attain an overall
acceptance rate of 23%. We use the AM Algorithm of Andrieu and Thoms (2008) to carry
out this task. Finally, A is updated according to an ensemble Markov chain sampling
algorithm due to Neal (2011); see Appendix A.



2.3 Model selection

A critical issue in model fitting is the choice of the polynomial basis order K. For the
corporate proposal voting data, substantive differences can be seen in the estimate of «
when using K = 2 versus K = 3, including a potential sign change of the coefficient for
analyst coverage; see Appendix/Supplementary Figure FF. Intuitively, if K was chosen too
large or too small, the model could overfit or underfit the continuous piece of the density,
and potentially distort the estimate of a as an artifact. A data-driven choice of K could
be derived with formal model selection criteria such as the well known AIC or BIC which
assign a numeric score to a fitted a model by a combining of an assessment of its goodness
of fit with a measure of the underlying model complexity. For Bayesian models fitted
with Markov chain Monte Carlo approximation, a particularly attractive model selection
criterion is the Watanabe-Akaike information criterion (WAIC; Watanabe, 2013), given by

WAIC = -2 Z log Epost {pe(yi|xi)} + 2 Z Varpost{10g pe (vi[xi) } (4)
=1 =1
where the first term provides an assessment of model fit while the second term measures
model complexity; for either term, smaller values are preferable. The WAIC can also be
seen as an asymptotic limit of a leave-one-out cross-validation based scoring of model fit;
see Gelman et al. (2014) for more details.

In (4), E ot and varpes denote expectation and variance under posterior 7(0]y) o
L(0)7(0). These operations can be carried out via Monte Carlo approximation once a
sample of posterior draws of @ is available. However, calculation of WAIC in doubly
intractable problems poses additional challenges because (4) also depends on pg(y|x) being
easily computable. The data augmentation strategy we used for posterior computation
appears less helpful in avoiding the normalization operation in (1); see Li et al. (2016) for
cautionary tales for other latent variable models.

We are thus back to numerically evaluating the normalization integral in (1), one for
each observed data point, which may be carried out with the trapezoidal rule of quadrature.
However, these evaluations are needed only for the saved draws of the Gibbs sampler, whose
number is typically orders of magnitude smaller than the total number of iterations the
sampler is run for. In other words, even though one is forced to use quadrature for WAIC
calculation, a substantial amount of computational time is saved by adopting the data
augmentation strategy for posterior computation.

3 Numerical experiments

We report here results from two numerical experiments where we analyzed statistical perfor-
mance of the proposed estimation method and the model selection strategy based on WAIC,
with special attention to estimating the discontinuity regression coefficients a. In both ex-
periments, we considered a two-dimensional covariate vector x = (1,u), with u ~ N(0,1),
and used the model specification 1 to simulate values of the endogenous variable Y. Ex-
periment 1 used a true K = 2 with the true model parameters chosen in order to resemble
the corporate voting proposal data that motivated the work. Experiment 2 considered a
more challenging scenario with K = 4 and some sharper features of the density of Y away
from the cutoff.
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Figure 2: (a) Histogram of simulated y; values in one replicate data set with n = 20,000
from Experiment 1. (b) True and estimated p(y|x) (with K = 2) at select x = (1, u) values
with u € {—2,—-0.85,0.5,1.75}. In each case, red lines are posterior samples of p(y|x),
their mean is shown in blue and the black line is the truth. The accompanying histogram,
added for illustrative purposes, is based on the sub-sample with |u; — u| < 0.25.

3.1 Experiment 1

In this experiment, the endogenous variable Y was simulated from a density given by (1)
with KX =2 and 6 = Y consisting of

AT =(4,1), B = (1.26,0), BY = (—1.65,—1.33), atr = (1,4), A\ =0.16.

The rejection sampling algorithm in Section 2.1 was used to simulate y values. A total of
100 synthetic data sets were generated, each with n = 20,000. Fig 2 shows data histogram
from one such replicate, along with true and estimated p(y|x) curves for select values of x.

Density discontinuity regression analysis was run on the 100 replication data sets for
each choice of K = 2, 3,4, with same hyperparameters as described in Section 2.2. Posterior
means and 95% credible intervals were used as point and interval estimates of all model
parameters, and compared against true values (for analyses with K > 2, we took B,Er =
(0,0) for each k > 2). Table 1 reports, for each coice of K, the average length and coverage
of the estimated intervals, the mean squared error (MSE) of the point estimates, and the
percentage of data replicates where that choice of K had the smallest WAIC. Although
WAIC chose the correct model (K = 2) most of the time, there were occasions where
a larger value of K provided a better fit to the particular data set. Overall, estimates
of a (and also of \) were similar across different choices of K, but on average K = 2
produced better point estimates and tighter intervals with comparable or better coverage.
Reassuringly, the performance of the WAIC-selected model fit was comparable to that of
the model fit with the oracle choice of K = 2.



Table 1: Results from Experiment 1 with true K = 2. Last three rows shows the perfor-
mance of WAIC-based model selection

K=2 K=3 K=4

0 Tr  Length MSE Coverage Length MSE Coverage Length MSE Coverage
o 1 0.75 0.048  94% 084 0.048  95% 087 0.051  95%
o 4 1.17  0.15 83 123 023 7 1.24 022 78
B 126 066  0.03 90 0.81  0.08 83 0.89  0.10 81
B2 0 0.27  0.00 97 0.40  0.02 86 041  0.01 92
By 165 042  0.02 90 0.77  0.11 72 1.02 017 78
By 133 033  0.01 92 0.57  0.04 81 0.61  0.04 86
Bs1 0 0.38  0.02 79 0.60  0.05 83
Bsa 0 0.29  0.01 83 047  0.02 93
Bu 0 027  0.01 91
Baa 0 0.28  0.00 98
" 4 0.36  0.01 96 0.48  0.01 95 0.57  0.02 96
Yo 1 0.07  0.00 96 0.09  0.00 98 0.10  0.00 99

A 0.16 0.04  0.00 95 0.04  0.00 96 0.05  0.00 94

WAIC 63% 24% 13%

o3P 1 0.78  0.044 96
o3P 4 119 0.18 81

Absent any competing method, it is difficult to quantitatively evaluate how good the
results of Experiment 1 truly are. Qualitatively speaking, estimation performance appears
encouraging. The estimated intervals of o; appear tight enough to recover the true sign with
high accuracy. Small mean squared errors indicate good recovery of coefficient magnitudes.
It does seem that estimating as is harder than estimating a;. This makes intuitive sense
because a; relates to the jump size of the overall density discontinuity, whereas as makes
the more delicate but critical connection between jump size and covariates. The results
here underline that density discontinuity regression is indeed a nontrivial problem and more
research in this area is warranted.

3.2 Experiment 2

In a second experiment we tested model performance against a more challenging ground
truth. Most model parameters, including v, a and A, were fixed at the same values as
in Experiment 1, but a larger value of K = 4 was used to specify the true conditional
densities, with corresponding 3, parameters chosen as

T — (=5,0), B = (—1,—1.5), Btrs = (—8,0.5), B = (1,—1).

Fig 3 shows true and estimated p(y|x) for select x values for one replicate data set. As can
be seen, the true conditional densities show sharp drop beyond y = 0.6. As before, 100
replication data sets were simulated with n = 20,000 each. Each data set was analyzed by
the density discontinuity regression method with two choices of K € {3,4}, with all other
hyperparameters fixed as in the earlier study. Results are reported in Table 2. WAIC chose
the correct model specification (K = 4) 100% of the time.
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Figure 3: (a) Histogram of simulated y; and (b) true and estimated (with K = 3) condi-
tional density p(y|x) for select x values, with y values trimmed to (—0.5,0.5). See Fig 2
for more details.

Although WAIC was able to identify the correct model (K = 4) in all cases, and
the corresponding estimates of a are as good as in the simpler setting of Experiment 1,
it is worthwhile to consider if an alternative estimation strategy could be adopted here.
The Gibbs sampling algorithm adopted here exhibits slower mixing for larger K values.
It is conceivable that substantial computational and statistical gains could be made by
analyzing only a subset of the data with y; values that lie within a truncated range around
the cutoff. While a trimmed data analysis could be easily embedded within the modeling
and estimation approach described here, it raises an interesting question of how one would
select an ideal truncation level. At this point it is not clear how one could modify the
WAIC formula to address the issue that for different trimming levels, we would be analyzing
different sub-samples with different sizes. We leave this question for future consideration.

4 Corporate proposal voting analysis

4.1 Data

The original corporate voting dataset comprises all management-sponsored proposals in
the ISS Voting Analytics database that were initiated by U.S. firms during the period
2003 to 2015. After adding in standard company-related variables from the Compustat
and I/B/E/S databases, it had 52 variables and 30,566 proposals. For each proposal, the
response value is the distance of the support fraction from the threshold, which is derived
by subtracting the fraction of yes votes on the proposal from the pass threshold. We pick
five important covariates based on domain knowledge of what covariates are likely to matter
in this context and the extent to which they are not missing. After cleaning the data and
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Table 2: Results from Experiment 2 with true K =4

K=3 K=4
(7] Tr Length MSE Coverage Length MSE  Coverage
a 1 0.82 0.18 88% 0.91 0.11 83%
Qs 4 1.36 1.04 73 1.28  0.23 76
B -5 0.58 0.65 22 071  0.11 68
B2 0 0.54 0.36 2 0.61  0.03 94
B21 -1 0.66 0.60 3 0.93  0.06 94
By 1.5 0.5 1.06 0 0.84  0.05 97
Bs1 -8 077 1.01 36 0.88  0.20 53
Bz 05  0.72 0.13 71 0.83  0.07 87
Ba 1 0.64  0.02 96
B2 -1 0.57  0.01 98
o 4 0.53 1.41 4 0.51  0.03 85
Yo 1 0.31 0.94 3 0.31  0.02 77
A 016 007 0.0 96 0.10  0.00 81
WAIC 0% 100%
o1 091 011 83%
s 4 128 023 76

dropping observations where important covariates are missing or the response cannot be

reliably measured, we are left with 19,775 data points. A description of covariates is given
in Table 3.

Table 3: Explanation of all variables in the corporate proposal voting data

Variable Name Explanation
from.requirement.threshold | Support fraction minus the passing threshold
ISS.against Institutional Shareholder Services (ISS) is a company pro-

viding a subscription service that provides opinions on how
shareholders should vote on each proposal. This is a binary
variable that is 1 when ISS recommends voting against the

proposal.

analyst.coverage How many equity analysts actively track and publish opin-
ions on a company and its stock.

past.stock.return Return of each stock

Q The Q ratio, also known as Tobin’s Q, equals the market
value of a company divided by its assets’ replacement cost.

firm.size The logarithm of the book value of assets of the company

4.2 Results

Density discontinuity regression analysis was carried out with K € {2,3,4}. For each
model, we ran 10 parallel chains from different initializing points, with a burn-in size of
15,000 and posterior samples of 25,000. For K = 4, we found the mixing of the Markov
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Table 4: Estimates and 95% intervals of e and A\ from corporate voting data analysis

Parameter Estimate  95% Interval
a: Intercept 1.55  (1.33, 1.77)

a: ISS.against 0.12  (-0.03, 0.26)
a: analyst.coverage —-0.30 (-0.55, —0.05)
a: past.stock.return 0.18 (-0.01, 0.37)
a: Q 0.11  (-0.09, 0.32)
a: firm.size -0.04 (-0.29, 0.20)
A 0.29  (0.25, 0.31)

chains less than satisfactory, and removed this case from further consideration. Mixing was
good for both K — 2 and 3, between which WAIC clearly favored the larger order (WAIC
= —6763.95 for K = 3 versus —6724.98 for K = 2).

Table 4 shows estimates of parameters associated with jump size from the model with
K = 3. Our estimates indicate that analyst coverage is significantly negatively associated
with jump size, whereas ISS recommendation against the proposal and past stock returns
are weakly positively associated. Remaining covariates, namely the Q value and firm size,
seem to have little association with density discontinuity. Estimate A\ is on the larger
side, suggesting that withholding may persist for proposals that land far below the passing
benchmark. Among other model parameters, we note that the baseline shape parameter
are estimated to be 4 = (3.94,0.89). The corresponding beta density would suggest an
overall average of 81.5% votes in favor, which closely matches the empirical figure of 82.8%
we calculated from the data.

5 Concluding remarks

In this article we have formalized density discontinuity analysis as a regression problem
and introduced a novel estimation strategy. Our method can quantitatively relate density
discontinuity to measured covariates with reasonable statistical accuracy. In addition, we
have provided a model selection criterion based on WAIC with moderate success in identify-
ing the correct model complexity. In the process of developing the theory and interpreting
results of the numerical experiments, we have highlighted that density discontinuity regres-
sion is not a trivial task; it has its unique set of challenges related to computation and
statistical complexity:.

In multiple ways, our efforts in this article barely scratch the surface of density dis-
continuity regression. For example, our illustrations restrict to a generic form of the jump
function j,(y), which may be justifiable for the voting proposal analysis. A more care-
ful analysis should consider different form of the jump function motivated by the applied
context and evaluate, through numerical experiments, whether WAIC or a similar model
selection criterion could be used to pick the ideal function.

A second issue that we alluded to earlier is the question of data trimming. Some
potential benefits of data trimming are as follows. When the sample size is large, the fit
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of the polynomial model for the continuous piece r.(x,y) could be strongly influenced by
sharp density features away from the cutoff, and subsequently, may incur estimation bias
around the cutoff. A biased estimation of the continuous piece could produce unreliable
estimate of a, which is the central focus of our analysis. Trimming down the data to a
shorter window around the cutoff could protect against non-local influence of model fit.
Arguably an excellent local fit to trimmed data could be attained with a smaller value
of K, for which Markov chain Monte Carlo approximation can attain high accuracy with
fewer iterations than what is needed for models with larger K. Data trimming also reduces
the time it takes to evaluate the likelihood function, thus also speeding up computation
per iteration. However, our preliminary results (not reported here) suggest that comparing
a trimmed data model fit to a full data model fit is far from straightforard; more work is
needed in this direction.

Appendix

A Ensemble MCMC algorithm for A

There are two facts being considered when we choose the MCMC method for A. First, gen-
erating rejection history and Pélya-Gamma random variables requires some computation
time. After this data augmentation, however, the computation of likelihood becomes much
faster. This situation is sometimes called ‘fast and slow variables’. Second, because we
restrict A to (0,0.32), it is easy to come up with a proper proposal distribution to sample
from, e.g. a Beta distribution multiplied by 0.32. Based on these two facts, we use ensemble
MCMC (Neal (2011)) for sampling A to produce computational advantage.

Ensemble MCMUC is a class of MCMC methods specifically designed for problems with
fast and slow variables. A general ensemble MCMC includes three steps: 1. mapping
from the original space x to a new space x; 2. performing updates on this new space; 3.
mapping back to the original space. The term ‘ensemble’ comes from its use of an ensemble
of M states. The stochastic mapping from x to x™ is defined as an ensemble base measure
C(l’l, c ,LL'M).

Neal (2011) shows that when xy,...,x) are independent and identically distributed
under (, the ordering of states in the ensemble becomes irrelevant. The mapping from the
original space to an ensemble is to combine the current state with M —1 states sampled from
(. The mapping back to the original space is to randomly select a state from x1,..., 2y
with probabilities proportional to 7(z,)/{(2,), where 7(z) is the target distribution and
((z) is the marginal distribution of all the xy.

In our application, we can further simplify the computation by taking ((x) to be the
same as the prior distribution of A we set. Then probabilities are proportional to likelihood
L(Ma, B,7,w), which can be computed based on result (??). Algorithm 1 shows steps to
draw posterior sample of .
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Algorithm 1 Ensemble MCMC algorithm for A
Input: At iteration i, the augmented data, and the current parameter value 6;
Output: Updated posterior sample \;;; of iteration i+1

1: forjin1to M —1do

2: Draw 7; ~ Beta(1,2), take 25 = 0.32 x &; and compute w; = L(z}|, Bi, Vi, wi)
3: end for

4: Set x3, = A; and compute wy, = L(x5,|ay, Biy v, wi)

5: Select an index m from (1,..., M) with probabilities proportional to (wy,...,war)
6: Update \;jy1 = 7,

B. Additional details of the corporate proposal voting analysis

Fig 4 shows 95% intervals for the coordinates of ¢ for the corporate proposal voting analysis
with K = 2 and 3. For each analysis, ten Markov chain samplers were used, with random
initial points. The fact that the ten results intervals (shown with different colors) are almost
indistinguishable from one another suggests good mixing of the Markov chains, and hence
highly accurate and reproducible posterior approximation.
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Figure 4: 95% credible intervals of a, ..., ag with different color denoting different chains
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